Estimating Covariance for Privacy Case under Interval and Fuzzy Uncertainty

Ali Jalal-Kamali, Vladik Kreinovich, and Luc Longpré

> Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA ajalalkamali@miners.utep.edu vladik@utep.edu longpre@utep.edu

1. Need to preserve privacy in statistical databases

- In order to find relations between different quantities, we *collect* a large amount of *data*.
- Example: we collect medical data to try to find correlations between a disease and lifestyle factors.
- In some cases, we are looking for commonsense correlations, e.g., between smoking and lung diseases.
- For statistical databases to be most useful, we need to allow researchers to ask arbitrary questions.
- However, this may inadvertently disclose some private information about the individuals.
- Therefore, it is desirable to *preserve privacy* in statistical databases.

2. Intervals as a way to preserve privacy in statistical databases

- One way to preserve privacy is to store *ranges* (intervals) rather than the exact data values.
- This makes sense from the viewpoint of a statistical database.
- In general, this is how data is often collected:
 - we set some threshold values t_0, \ldots, t_N and
 - ask a person whether the actual value x_i is in the interval $[t_0, t_1]$, or ..., or in the interval $[t_{N-1}, t_N]$.
- As a result, for each quantity x and for each person i:
 - instead of the exact value x_i ,
 - we store an interval $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$ that contains x_i .
- Each of these intervals coincides with one of the given ranges $[t_0, t_1], [t_1, t_2], \ldots, [t_{N-1}, t_N].$

Intervals as a way to . . . Need to estimate... Possibility of . . . Algorithm for . . . Resulting computation. Computation time: . . . Toward justification of . . Acknowledgments Home Page Title Page **>>** Page 3 of 27 Go Back Full Screen Close Quit

Need to preserve . . .

3. Need to estimate covariance and correlation under interval uncertainty

- One of the main objectives of collecting data is to find *correlations* between different variables.
- A correlation $\rho_{x,y}$ between two quantities x and y is defined as: $\rho_{x,y} = \frac{C_{x,y}}{\sigma_x \cdot \sigma_y}$; $\sigma_x = \sqrt{V_x}$, $\sigma_y = \sqrt{V_y}$,

$$C_{x,y} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E_x) \cdot (y_i - E_y) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - E_x \cdot E_y$$

$$V_x = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E_x)^2, \quad V_y = \frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - E_y)^2$$

$$E_x = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i, \quad E_y = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i$$

• So, we need to find the range of $C_{x,y}(x_1,\ldots,x_n,y_1,\ldots,y_n)$.

Need to preserve...

Intervals as a way to...

Need to estimate...

Possibility of . . .

Algorithm for...

Resulting computation.

Computation time: . . .

Toward justification of . .

Acknowledgments

Home Page

Title Page

Page 4 of 27

Go Back

Full Screen

Close

4. Estimating statistical characteristics under interval uncertainty: what is known

 \bullet General problem of $interval\ computations$: estimating the range

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=\{f(x_1,\ldots,x_n):x_1\in\mathbf{x}_1,\ldots,x_n\in\mathbf{x}_n\}$$

- of a given function $f(x_1, \ldots, x_n)$
- on given intervals $\mathbf{x}_1, \ldots, \mathbf{x}_n$.
- The need for interval computations comes beyond privacy concerns.
- Usually, data come from measurements, and measurements are never absolutely accurate.
- Often, the only information about the measurement error $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i x_i$ is the upper bound Δ_i : $|\Delta x_i| \leq \Delta_i$.
- So, the actual value x_i is in the interval

$$\mathbf{x}_i = [\underline{x}_i, \overline{x}_i] = [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i]$$

Intervals as a way to . . . Need to estimate... Possibility of . . . Algorithm for . . . Resulting computation. Computation time: . . . Toward justification of . . Acknowledgments Home Page Title Page **>>** Page 5 of 27 Go Back Full Screen

Close

Quit

Need to preserve . . .

5. Estimating statistical characteristics for privacy case under interval uncertainty

- What is known:
 - for the general case,
 - the problems of computing the range of variance and covariance are NP-hard.
- What is known:
 - for privacy case,
 - the range of *variance* can be computed in polynomial time.
- In this paper we show that:
 - for privacy case,
 - the range of *covariance* can also be computed in polynomial time.

Need to preserve...

Intervals as a way to...

Need to estimate...

Possibility of . . .

Algorithm for...

Resulting computation

Computation time: . . .

Toward justification of . .

Acknowledgments

Home Page

Title Page

4

♦ Page 6 of 27

Go Back

Full Screen

Close

Close

6. Possibility of extending our results of the fuzzy case

- An alternative way to preserve privacy is to have fuzzy thresholds.
- This possibility goes beyond privacy preservation.
- We can provide reasonable estimates in terms of words from natural language. In this case,
 - for each i, instead of an interval \mathbf{x}_i ,
 - we have a fuzzy number X_i describing the corr. natural language word, with a membership f-n $\mu_i(x_i)$.
- For $C(x_1, \ldots, x_n)$, Zadeh's extension principle defines, for fuzzy inputs X_1, \ldots, X_n , the fuzzy value

$$Y = C(X_1, \dots, X_n).$$

C. Possibility of extending our results of the fuzzy case (cont-d)

• Zadeh's extension can be expressed in terms of α -cuts

$$X_i(\alpha) \stackrel{\text{def}}{=} \{x_i : \mu_i(x_i) \ge \alpha\} \text{ and } C(\alpha) \stackrel{\text{def}}{=} \{y : \mu(y) \ge \alpha\}.$$

• Specifically, for every α :

$$C(\alpha) = \{C(x_1, \dots, x_n) : x_1 \in X_1(\alpha), \dots, x_n \in X_n(\alpha)\}.$$

- Thus, for each $\alpha \in (0,1]$:
 - the corresponding α -cut $C(\alpha)$
 - can be obtained by solving the corresponding interval computations problem.
 - Therefore, in the following paper, we only consider the case of interval uncertainty.

Need to preserve . . . Intervals as a way to . . . Need to estimate... Possibility of . . . Algorithm for . . . Resulting computation . . Computation time: . . . Toward justification of . . Acknowledgments Home Page Title Page **>>** Page 8 of 27 Go Back Full Screen Close Quit

8. Formulation of the problem

- Given:
 - x-thresholds $t_0^{(x)}, t_1^{(x)}, \ldots, t_{N_x}^{(x)};$
 - y-thresholds $t_0^{(y)}, t_1^{(y)}, \ldots, t_{N_y}^{(y)}$;
 - n pairs of intervals $(\mathbf{x}_i, \mathbf{y}_i)$ in which:
 - each of \mathbf{x}_i is one of the x-ranges $[t_k^{(x)}, t_{k+1}^{(x)}]$, and
 - each of \mathbf{y}_i is one of the y-ranges $[t_{\ell}^{(y)}, t_{\ell+1}^{(y)}]$.
- Compute: the range $[\underline{C}_{x,y}, \overline{C}_{x,y}]$ of possible values of

$$C_{x,y} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E_x) \cdot (y_i - E_y) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - E_x \cdot E_y,$$

where

$$E_x = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i, \quad E_y = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i.$$

Need to preserve...

Intervals as a way to...

Need to estimate...

Possibility of . . .

Algorithm for . . .

Toward justification of . . .

Acknowledgments

Home Page

Title Page

Page 9 of 27

Go Back

Full Screen

Close

9. Reducing computing $\overline{C}_{x,y}$ to computing $\underline{C}_{x,y}$

- We need to compute both the maximum $\overline{C}_{x,y}$ and the minimum $\underline{C}_{x,y}$.
- When we change the sign of y_i , the covariance changes sign as well: $C_{xy}(x_i, -y_i) = -C_{xy}(x_i, y_i)$.
- Thus, for the ranges, we get $C_{xy}(\mathbf{x}_i, -\mathbf{y}_i) = -C_{xy}(\mathbf{x}_i, \mathbf{y}_i)$.
- Since the function $z \to -z$ is decreasing:
 - its smallest value is attained when z is the largest;
 - its largest value is attained when z is the smallest.
- Thus, if z goes from \underline{z} to \overline{z} , the range of -z is $[-\overline{z}, -\underline{z}]$.
- Therefore, $\underline{C}_{xy}(\mathbf{x}_i, -\mathbf{y}_i) = -\overline{C}_{xy}(\mathbf{x}_i, \mathbf{y}_i)$.
- Thus, if we know how to compute $\underline{C}_{xy}(\mathbf{x}_i, \mathbf{y}_i)$, we can then compute $\overline{C}_{xy}(\mathbf{x}_i, \mathbf{y}_i)$ as $\overline{C}_{xy}(\mathbf{x}_i, \mathbf{y}_i) = -\underline{C}_{xy}(\mathbf{x}_i, -\mathbf{y}_i)$.
- So, we will now only talk about computing $\underline{C}_{x,y}$.

Intervals as a way to . . . Need to estimate... Possibility of . . . Algorithm for . . . Resulting computation. Computation time: . . . Toward justification of . . Acknowledgments Home Page Title Page **>>** Page 10 of 27 Go Back Full Screen Close

Quit

Need to preserve . . .

10. Algorithm for computing \underline{C}_{xy} : main idea

- We have N_x possible x-ranges $[t_k^{(x)}, t_{k+1}^{(x)}]$.
- We also have N_y possible y-ranges $[t_{\ell}^{(y)}, t_{\ell+1}^{(x)}]$.
- So, totally, we have $N_x \cdot N_y$ cells $[t_k^{(x)}, t_{k+1}^{(x)}] \times [t_\ell^{(y)}, t_{\ell+1}^{(y)}]$.
- \bullet In this algorithm, we analyze these cells c one by one.
- For each c, we assume that the pair (E_x, E_y) corresponding to the minimizing set (x_i, y_i) is contained in c.
- We then find the values (x_i, y_i) where, under this assumption, the minimum of C_{xy} is attained.
- Based on these values x_i and y_i , we compute E_x , E_y .
- If $(E_x, E_y) \in c$, we compute the value C_{xy} .
- The smallest of the corresponding values C_{xy} is the desired minimum \underline{C}_{xy} .

Need to preserve...

Intervals as a way to...

Need to estimate...

Possibility of . . .

Algorithm for . . .

Resulting computation . . . Computation time: . . .

Toward justification of . .

Acknowledgments

Home Page

Title Page

Go Back

Eull Scroon

Full Screen

Close

11. Possible position of intervals x_i and y_i in relation to the cell

- For each cell $[t_k^{(x)}, t_{k+1}^{(x)}] \times [t_\ell^{(y)}, t_{\ell+1}^{(y)}]$ and for each i, there are three possible positions for \mathbf{x}_i :
 - X^0 : \mathbf{x}_i coincides with the cell's x-range;
 - X^- : \mathbf{x}_i is to the left of the x-range;
 - X^+ : \mathbf{x}_i is to the right of the x-range.
- Similarly, there are three possible positions for y_i :
 - Y^0 : \mathbf{y}_i coincides with the cell's y-range;
 - Y^- : \mathbf{y}_i is to the left of the y-range;
 - Y^+ : \mathbf{y}_i is to the right of the y-range.
- So, we have $3 \cdot 3 = 9$ pairs of options.

12. Selecting x_i and y_i at which C_{xy} attains its minimum

For each cell c and for each i, the minimum of \underline{C}_{xy} under the assumption $(E_x, E_y) \in c$ is attained:

- in case (X^+, Y^+) : for $x_i = \underline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^+, Y^0) : for $x_i = \overline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^+, Y^-) : for $x_i = \overline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^-, Y^+) : for $x_i = \underline{x}_i$ and $y_i = \overline{y}_i$;
- in case (X^-, Y^0) : for $x_i = \underline{x}_i$ and $y_i = \overline{y}_i$;
- in case (X^-, Y^-) : for $x_i = \overline{x}_i$ and $y_i = \overline{y}_i$;
- in case (X^0, Y^+) : for $x_i = \underline{x}_i$ and $y_i = \overline{y}_i$;
- in case (X^0, Y^-) : for $x_i = \overline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^0, Y^0) : for $(x_i, y_i) = (\underline{x}_i, \underline{y}_i)$ or for $(x_i, y_i) = (\overline{x}_i, \overline{y}_i)$.

Need to preserve...

Intervals as a way to...

Need to estimate...

Possibility of . . .

Algorithm for . . .

Resulting computation

Computation time: . . .

Toward justification of . .

Acknowledgments

Home Page

Title Page

44 **>>**

← →

Page 13 of 27

Go Back

Full Screen

Close

Close

13. Implementation details

- For those i for which $\mathbf{x}_i \times \mathbf{y}_i \neq c$, we directly compute the minimizing values x_i and y_i .
- For each i for which $\mathbf{x}_i \times \mathbf{y}_i = c$, we have two different options: $(x_i, y_i) = (\underline{x}_i, y_i)$ and $(x_i, y_i) = (\overline{x}_i, \overline{y}_i)$.
- A naive implementation would require testing all 2^M combinations, where M is the number of such cells.
- Luckily, the value C_{xy} does not change if we swap pairs (x_i, y_i) .
- So, the value C_{xy} only depends on the number of *i*'s to which we assign $(x_i, y_i) = (\underline{x}_i, \underline{y}_i)$.
- Thus, we can make computations efficient if, for each integer m = 0, 1, 2, ..., M, we assign:
 - to m i's, the values $x_i = \underline{x}_i$ and $y_i = y_i$, and
 - to the rest, the values $x_i = \overline{x}_i$ and $y_i = \overline{y}_i$.

Intervals as a way to . . . Need to estimate . . . Possibility of . . . Algorithm for . . . Resulting computation. Computation time: . . . Toward justification of . . Acknowledgments Home Page Title Page **>>** Page 14 of 27 Go Back Full Screen Close Quit

Need to preserve . . .

14. Resulting computation time of our algorithm

- For each cell, we perform $M+1 \leq n$ computations C_{xy} one for each option m.
- In general, computing $E_x = \frac{1}{n} \cdot \sum_{i=1}^n x_i$, $E_y = \frac{1}{n} \cdot \sum_{i=1}^n y_i$, and $C_{x,y} = \frac{1}{n} \cdot \sum_{i=1}^n (x_i E_x) \cdot (y_i E_y)$ takes time O(n).

$$\stackrel{i=1}{\bullet}$$
 However, each new computation differs from the pre-

- by a single change in $\sum x_i \cdot y_i$ and

vious one

- a single change in estimating $E_x \sim \sum x_i$ and $E_y \sim \sum y_i$.
- Thus, each new computation requires O(1), and so, for each cell, the total computation time is O(n).
- So, for all $N_x \cdot N_y$ cells, we need time $O(N_x \cdot N_y \cdot n)$.

Intervals as a way to...

Need to estimate...

Possibility of . . .

Need to preserve . . .

Algorithm for . . .

Resulting computation . . . Computation time: . . .

Toward justification of . .

Acknowledgments

Home Page

Title Page

Page 15 of 27

Go Back

Full Screen

Full Screen

Close

15. Computation time: discussion

- Reminder: this algorithm takes time $O(N_x \cdot N_y \cdot n)$.
- Usually, the number N_x of x-ranges and the number N_y of y-ranges are fixed.
- In this case, what we have is a *linear-time* algorithm.
- Clearly, it is not possible to compute covariance faster than in linear time:
 - we need to take into account all n data points, and
 - processing each data point requires at least one computation.
- So, our algorithm is (asymptotically) optimal it requires the smallest possible order of computation time O(n).
- Comment: for general (non-privacy) intervals, the problem is NP-hard.

Need to preserve...

Intervals as a way to...

Need to estimate...

Possibility of...

Algorithm for...

Resulting computation...

Computation time: . . .

Toward justification of . . .

Acknowledgments

Home Page

Title Page

44 >>

4

Page 16 of 27

Go Back

Full Screen

Close

Close

16. Computing \overline{C}_{xy}

- We use the fact that $\overline{C}_{xy}(\mathbf{x}_i, \mathbf{y}_i) = -\underline{C}_{xy}(\mathbf{x}_i, -\mathbf{y}_i)$.
- We form N_y threshold values for $z \stackrel{\text{def}}{=} -y$:

$$t_0^{(z)} = -t_{N_u}^{(y)}, t_1^{(z)} = -t_{N_u-1}^{(y)}, \dots, t_{N_u}^{(z)} = -t_0^{(y)}.$$

• We then form N_u z-ranges:

$$[t_0^{(z)}, t_1^{(z)}], [t_1^{(z)}, t_2^{(z)}], \dots, [t_{N_v-1}^{(z)}, t_{N_v}^{(z)}].$$

- Based on the intervals $\mathbf{y}_i = [\underline{y}_i, \overline{y}_i]$, we form intervals $\mathbf{z}_i = -\mathbf{y}_i = [-\overline{y}_i, -y_i]$.
- We apply the above algorithm for computing the lower bound to compute the value $\underline{C}_{xy}(\mathbf{x}_i, -\mathbf{y}_i)$.
- Finally, we compute \overline{C}_{xy} as $\overline{C}_{xy}(\mathbf{x}_i, \mathbf{y}_i) = -\underline{C}_{xy}(\mathbf{x}_i, -\mathbf{y}_i)$.

Need to preserve . . . Intervals as a way to . . Need to estimate . . . Possibility of . . . Algorithm for . . . Resulting computation. Computation time: . . . Toward justification of . . Acknowledgments Home Page Title Page 44 **>>** Page 17 of 27 Go Back Full Screen Close

- A function f(x) defined on an interval $[\underline{x}, \overline{x}]$ attains its
 - either an internal point $x \in (\underline{x}, \overline{x})$,

minimum:

- or at one of its endpoints $x = \underline{x}$ or $x = \overline{x}$.
- If the minimum of f(x) is attained at an internal point, then

$$\frac{df}{dx} = 0.$$

• If the minimum is attained for $x = \underline{x}$, then

$$\frac{df}{dx} \ge 0.$$

• If the minimum is attained for $x = \overline{x}$, then

$$\frac{df}{dx} \le 0.$$

Need to preserve . . . Intervals as a way to . .

Need to estimate...

Possibility of . . .

Algorithm for . . .

Resulting computation. Computation time: . . .

Toward justification of . . Acknowledgments

Home Page

>>

Title Page

Page 18 of 27

Go Back

Full Screen

Close

Let us apply these known facts to our problem

• In general, for the point (x_1,\ldots,x_n) at which a function $f(x_1, \ldots, x_n)$ attains its minimum, we have:

- if
$$x_i = \underline{x}_i$$
, then $\frac{\partial f}{\partial x_i} \ge 0$;
- if $x_i = \overline{x}_i$, then $\frac{\partial f}{\partial x_i} \le 0$;

- if $\underline{x}_i < x_i < \overline{x}_i$, then $\frac{\partial f}{\partial x_i} = 0$.
- For covariance C_{xy} , we have $\frac{\partial C_{xy}}{\partial x_i} = \frac{1}{n} \cdot (y_i E_y)$.
- Thus, for the point $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ at which C_{xu} attains its minimum, we have:

$$- \text{ if } x_i = \underline{x}_i, \text{ then } y_i \geq E_y.$$

$$- \text{ if } x_i = \overline{x}_i, \text{ then } y_i \leq E_y.$$

$$- \text{ if } \underline{x}_i < x_i < \overline{x}_i, \text{ then } y_i = E_y.$$

Need to preserve . . . Intervals as a way to . . .

Need to estimate...

Possibility of . . .

Algorithm for . . .

Resulting computation. Computation time: . . .

Toward justification of . .

Acknowledgments Home Page

Title Page

Page 19 of 27

Go Back

Full Screen

Close

19. Case of $\overline{y}_i < E_u$

- Case: $\overline{y}_i < E_y$.
- Reminder:
 - $\text{ if } x_i = \underline{x}_i, \text{ then } y_i \geq E_y.$
 - $\text{ if } x_i = \overline{x}_i, \text{ then } y_i \leq E_y.$
 - if $x_i < x_i < \overline{x}_i$, then $y_i = E_y$.
- Since $\overline{y}_i < E_y$ and $y_i \leq \overline{y}_i$, we have $y_i < E_y$.
- Thus, in this case:
 - we cannot have $x_i = \underline{x}_i$, because then we would have $y_i \geq E_y$
 - we cannot have $\underline{x}_i < x_i < \overline{x}_i$, because then we would have $y_i = E_y$.
- So, if $\overline{y}_i < E_y$, the only remaining option is $x_i = \overline{x}_i$.

Intervals as a way to...

Need to preserve . . .

Need to estimate...

Possibility of . . .

Algorithm for...

Resulting computation

Computation time: . . .

Toward justification of . . .

Acknowledgments

Home Page
Title Page

Page 20 of 27

Go Back

Full Screen

Close

20. Case of $E_y < y_i$

- Case: $E_y < \underline{y}_i$.
- Reminder:
 - $\text{ if } x_i = \underline{x}_i, \text{ then } y_i \geq E_y.$
 - $\text{ if } x_i = \overline{x}_i, \text{ then } y_i \leq E_y.$
 - if $x_i < x_i < \overline{x}_i$, then $y_i = E_y$.
- Since $E_y < \underline{y}_i$ and $\underline{y}_i \le y_i$, we have $E_y < y_i$.
- Thus, in this case:
 - we cannot have $x_i = \overline{x}_i$, because then we would have $y_i \leq E_y$
 - we cannot have $\underline{x}_i < x_i < \overline{x}_i$, because then we would have $y_i = E_y$.
- So, if $E_y < \underline{y}_i$, the only remaining option is $x_i = \underline{x}_i$.

Need to preserve...

Intervals as a way to...

Need to estimate...

Possibility of...

Algorithm for...

Resulting computation...

Computation time:...

Toward justification of . . .

Acknowledgments

Home Page
Title Page

44 >>>

←

Page 21 of 27

Go Back

Full Screen

Close

21. Cases of $\overline{x}_i < E_x$ and $E_x < \underline{x}_i$

- We have shown that:
 - if $\overline{y}_i < E_v$, then $x_i = \overline{x}_i$;
 - if $E_y < y_i$, then $x_i = \underline{x}_i$.
- We can similarly conclude that:
 - if $\overline{x}_i < E_x$, then $y_i = \overline{y}_i$;
 - if $E_x < \underline{x}_i$, then $y_i = y_i$.
- So, we can tell exactly where the min is attained if:
 - the interval \mathbf{x}_i is either completely to the left or to the right of E_x , and
 - the interval \mathbf{y}_i is either completely to the left or to the right of E_u ,
- E.g., if $\overline{x}_i < E_x$ (\mathbf{x}_i to the left of E_x) and $E_y < \underline{y}_i$ (\mathbf{y}_i to the right), then min is attained for $x_i = \underline{x}_i$ and $y_i = \overline{y}_i$.

Need to preserve...

Intervals as a way to...

Need to estimate...

Possibility of . . .

Algorithm for . . .

Resulting computation

Computation time: . . .

Toward justification of . .

Acknowledgments

Home Page

Title Page

Page 22 of 27

Go Back

Full Screen

Tuli Screen

Close

22. Case when one of the intervals contains E_x or E_y inside

- What if one of the intervals, e.g., \mathbf{x}_i , is fully to the left or fully to the right of E_x , but \mathbf{y}_i contains E_y inside?
- For example, if $\overline{x}_i < E_x$, this means that $y_i = \overline{y}_i$.
- Since E_y in inside the interval $[\underline{y}_i, \overline{y}_i]$, this means that $\underline{y}_i \leq E_y \leq \overline{y}_i$ and thus, $E_y \leq y_i$.
- If $E_y < y_i$, then, as we have shown earlier, we get $x_i = \underline{x}_i$.
- One can show that the same conclusion holds when $y_i = E_y$.
- So, in this case, we also have a single pair (x_i, y_i) where the minimum can be attained: $x_i = \underline{x}_i$ and $y_i = \overline{y}_i$.

23. Case when $(E_x, E_y) \in c$

- Where is the point (x_i, y_i) at which the minimum is attained?
- Calculus shows that (x_i, y_i) is in the union U_1 of the following three linear segments:
 - a segment where $x_i = \underline{x}_i$ and $y_i \geq E_y$;
 - a segment where $x_i = \overline{x}_i$ and $y_i \leq E_y$; and
 - a segment where $\underline{x}_i < x_i < \overline{x}_i$ and $y_i = E_y$.
- Similarly, (x_i, y_i) is in the union U_2 of the following three linear segments:
 - a segment where $y_i = y_i$ and $x_i \ge E_x$;
 - a segment where $y_i = \overline{y}_i$ and $x_i \leq E_x$; and
 - a segment where $\underline{y}_i < y_i < \overline{y}_i$ and $x_i = E_x$.
- So, $(x_i, y_i) \in U_1 \cap U_2 = \{(\underline{x}_i, \underline{y}_i), (\overline{x}_i, \overline{y}_i), (E_x, E_y)\}.$

Need to preserve...

Intervals as a way to...

Need to estimate...

Possibility of . . .

Algorithm for . . .

Resulting computation . . . Computation time: . . .

Toward justification of . . .

Acknowledgments

Home Page

Title Page

Page 24 of 27

Go Back

Full Screen

Close

24. Case when $(E_x, E_y) \in c$ (cont-d)

- We showed that in this case, the minimum of C_{xy} is attained at (\underline{x}_i, y_i) , $(\overline{x}_i, \overline{y}_i)$, or at (E_x, E_y) .
- Let us show that it cannot be attained at (E_x, E_y) .
- Indeed, let us then take a small Δ and replace $x_i = E_x$ with $x_i + \Delta$ and $y_i = E_y$ with $y_i \Delta$. Then:

$$E'_{x} = E_{x} + \frac{\Delta}{n}, \ E'_{y} = E_{y} - \frac{\Delta}{n}, \ C'_{xy} = C_{xy} - \frac{\Delta^{2}}{n} \cdot \left(1 - \frac{1}{n}\right).$$

- These equalities are easy to prove if we shift all the values of x_j by $-E_x$ and all the values of y_j by $-E_y$.
- Indeed, such a shift does not change C_{xy} .
- The new value C'_{xy} is smaller than C_{xy} , while we assumed that C_{xy} is minimal: a contradiction.
- Thus, in the case when $(E_x, E_y) \in c$, the minimum can be only attained at (\underline{x}_i, y_i) or $(\overline{x}_i, \overline{y}_i)$.

Need to preserve . . . Intervals as a way to . . Need to estimate . . . Possibility of . . . Algorithm for . . . Resulting computation. Computation time: . . . Toward justification of . . Acknowledgments Home Page Title Page **>>** Page 25 of 27 Go Back Full Screen Close Quit

25. Proof of correctness: final step

- We know that for minimizing vector $(x_1, \ldots, x_n, y_1, \ldots, y_n)$, the pair (E_x, E_y) must be contained in one of the $N_x \cdot N_y$ cells.
- We have already shown that for each cell, if the pair (E_x, E_y) is contained in this cell, then the corresponding minimizing values x_i and y_i at which the covariance C_{xy} attains its smallest value \underline{C}_{xy} will be as above.
- Thus, the actual minimizing value will be obtained when we analyze the corresponding cell.
- So, the desired value \underline{C}_{xy} will be among the values computed by the above algorithm.
- Thus, the smallest of the computed values will be exactly \underline{C}_{xy} .

Intervals as a way to . . Need to estimate... Possibility of . . . Algorithm for . . . Resulting computation. Computation time: . . . Toward justification of . . Acknowledgments Home Page Title Page **>>** Page 26 of 27 Go Back Full Screen Close Quit

Need to preserve . . .

26. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants HRD-0734825 and DUE-0926721,
- by Grant 1 T36 GM078000-01 from the National Institutes of Health,
- by Grant MSM 6198898701 from MSMT of Czech Republic, and
- by Grant 5015 "Application of fuzzy logic with operators in the knowledge based systems" from the Science and Technology Centre in Ukraine (STCU), funded by European Union.

