Chemical Kinetics in Situations Intermediate Between Usual and High Concentrations: Fuzzy-Motivated Derivation of the Formulas

Olga Kosheleva and Vladik Kreinovich University of Texas at El Paso 500 W. University El Paso, TX 79968, USA olgak@utep.edu, vladik@utep.edu

Laécio Carvalho Barros
Instituto de Matemática, Estatística,
e Computação Científica (IMECC
Universidade Estadual de Campinas (UNICAMP)
Campinas, SP, Brasil C.P. 6065
laeciocb@ime.unicamp.br

- Chemical kinetics describes the rate of chemical reactions.
- For usual concentrations:
 - the rate of a reaction between two substances
 A and B
 - is proportional to the product $c_A \cdot c_B$ of their concentration.
- Similarly, if we have a reaction

$$A + \ldots + B \rightarrow \ldots$$

with three or more substances:

- the rate of this reaction
- is proportional to the products of the concentrations of all these substances $c_A \cdot \ldots \cdot c_B$.

Chemical Kinetics: . . .

How Formulas of . . .

Case of High...

Example

Problem

Analysis of the . . .

Use of High-...

Resulting Formula for...

Remaining Open . . .

Home Page

Title Page

Page 2 of 21

Go Back

Full Screen

Close

2. How Formulas of Chemical Kinetics Are Usually Derived

- Molecules of both substances are randomly distributed in space.
- So, for each molecule of the substance A:
 - the probability that it meets a B-molecule
 - is proportional to the concentration c_B .
- If the molecules meet, then (with a certain probability) they get into a reaction.
- Thus, the mean number of reactions involving a given A-molecule is also proportional to c_B .
- The total number of A-molecules in a given volume is proportional to c_A .
- Thus, the total number of reactions per unit time is proportional to $c_A \cdot c_B$.

How Formulas of . . . Case of High . . . Example Use of High-... Problem Analysis of the . . . Resulting Formula for . . . Remaining Open . . . Home Page Title Page **>>** Page 3 of 21 Go Back Full Screen Close Quit

Chemical Kinetics: . . .

3. Case of High Concentrations

- When the concentrations are very high, there is no need for the molecules to randomly bump into each other.
- Indeed, these molecules are everywhere.
- So, as soon as we have molecules of all needed type, the reaction starts.
- In other words, in this case, the reaction rate is proportional to the concentration of the corresponding tuples.
- Thus, the reaction rate is proportional to the minimum $\min(c_A, \ldots, c_B)$ of all the input concentrations

 c_A,\ldots,c_B .

4. Example

- The formula $\min(c_A, \ldots, c_B)$ can be easily illustrated on a similar relation between predators and prey.
- Let us throw a bunch of rabbits into a zoo cage filled with hungry wolves.
- Then each wolf will start eating its rabbit.
- This will continue as long as there are sufficiently many rabbits to feed all the wolves.
- When $c_R \geq c_W$, the number of eaten rabbits will be proportional to the number of wolves, i.e., to c_W .
- When there are few rabbits $(c_R < c_W)$, the number of eaten rabbits is sim the number of rabbits c_R .
- In both cases, the reaction rate is proportional to $\min(c_R, c_W)$.

5. Use of High-Concentration Reactions

- 1) The high-concentration reaction rate indeed turned out to be very useful to describe biochemical processes.
- 2) In many cases, difficult-to-solve computational problems can be reduced to problems of chemical kinetics.
 - We can then solve the original problem by simulating these reactions.
 - To make simulations as fast as possible, it is desirable to simulate reactions which are as fast as possible.
 - The reaction rate increases with the concentrations of the reagents.
 - Thus, to speed up simulations, we should simulate high-concentration reactions.
 - This simulation indeed speeds up the corresponding computations.

6. Problem

- We know the formulas for the usual and for the high concentrations.
- However, it is not clear how to compute the reaction rate for concentrations between usual and high.
- Both $r = c_A \cdot c_B$ and $r = \min(c_A, c_B)$ are particular cases of t-norms "and"-operations in fuzzy logic.
- This is not a coincidence:
 - there is no reaction if one of the substances is missing, so $c_A = 0$ or c_B imply that r = 0;
 - his is exactly the property of a t-norm.
- Fuzzy t-norms have indeed been effectively used to describe chemical reactions.
- *Problem:* there are many possible "and"-operations, it is not clear which one to select.

7. Analysis of the Problem: General Case

- Let's analyze the problem to find the most appropriate "and"-operation.
- Two molecules get into a reaction only when they are close enough.
- When these molecules are close enough, then the reaction rate is proportional to $\min(c_A, c_B)$.

8. Case of Low Concentrations

- When *concentrations* are *low*, then, within each region, we have either zero or one molecule.
- The probability to have two molecules is very small (proportional to the square of these concentrations).
- This probability can thus be safely ignored.
- In this case, for each region, the reaction occurs if we have both an A-molecule and a B-molecule.
- The probability to have an A-molecule is $\sim c_A$.
- The probability to have a B-molecule is $\sim c_B$.
- The distributions for A and B are independent.
- Thus, the probability to have both A- and B-molecules in a region is equal to the product of these probabilities.
- This probability is thus proportional to the product of the concentrations $c_A \cdot c_B$.

9. Case of High Concentrations

- When the concentrations are high, then each region has molecules of both types.
- The average number of A-molecules in a region is proportional to c_A : equal to $k \cdot c_A$ for some k.
- Similarly, the average number of B-molecules in a region is equal to $k \cdot c_B$.
- So the average reaction rate is proportional to

$$\min(k \cdot c_A, k \cdot c_B) = k \cdot \min(c_A, c_B).$$

- The rate is thus proportional to $min(c_A, c_B)$.
- This analysis leads us to the following reformulation of our problem.

10. Resulting Formulation of the Problem in Precise Terms

- Within a unit volume, we have a certain number r of "small regions".
- Small means that only molecules within the same region can interact with each other.
- We have a total of $N_A = N \cdot c_A$ A-molecules and $N_B = N \cdot c_B$ B-molecules.
- Each of these molecules is randomly distributed among the regions.
- So, it can be located in any of the r regions with equal probability.
- Within each region, the reaction rate is $\sim \min(n_A, n_B)$.
- The overall reaction rate is the *average* over all the regions.

Chemical Kinetics: . . . How Formulas of . . . Case of High . . . Example Use of High-... Problem Analysis of the . . . Resulting Formula for . . . Remaining Open . . . Home Page Title Page **>>** Page 11 of 21 Go Back Full Screen Close Quit

11. Analysis of the Problem

- Based on the above description, the number of A-molecules in a region follows the Poisson distribution.
- For each value k, the probability to have exactly $n_A = k$ A-molecules is equal to $\Pr(n_A = k) = \exp(-\lambda_A) \cdot \frac{\lambda_A^k}{k!}$.
- The mean value of the Poisson random variable is λ_A .
- On the other hand, we have $N \cdot c_A$ A-molecules in r cells.
- So, the average number of A-molecules in a cell is equal to the ratio $\frac{N \cdot c_A}{r}$.
- Hence $\lambda_A = \frac{N \cdot c_A}{r} = c \cdot c_A$, where $c \stackrel{\text{def}}{=} \frac{N}{r}$.
- Similarly, $\Pr(n_B = k) = \exp(-\lambda_B) \cdot \frac{\lambda_B^k}{k!}$, with $\lambda_B = c \cdot c_B$.

Chemical Kinetics: . . .

How Formulas of . . .

Case of High...

Use of High-...

Analysis of the . . .

Problem

Example

robiem

Resulting Formula for...

Remaining Open . . .

Title Page

Home Page

Page 12 of 21

Go Back

Full Screen

Clos

Close

12. Analysis (cont-d)

- The distribution for $n = \min(n_A, n_B)$ can be obtained from the fact that $n \ge k \Leftrightarrow (n_A \ge k \& n_B \ge k)$.
- Since A- and B-molecules are independently distributed, $\Pr(n \ge k) = \Pr(n_A \ge k) \cdot \Pr(n_B \ge k)$.
- $\Pr(n_A \ge k) = \sum_{\ell=k}^{\infty} \Pr(n_A = \ell) = \exp(-\lambda_A) \cdot \sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!}$.
- Similarly, $\Pr(n_B \ge k) = \exp(-\lambda_B) \cdot \sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!}$, so:

$$\Pr(n \ge k) = \exp(-(\lambda_A + \lambda_B)) \cdot \left(\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!}\right) \cdot \left(\sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!}\right).$$

 \bullet The expected value E can be now computed as

$$E = \sum_{k=0}^{\infty} k \cdot \Pr(n = k) = \sum_{k=1}^{\infty} \Pr(n \ge k);$$
 thus:

Chemical Kinetics: . . .

How Formulas of . . .

Case of High...

Example

Use of High-...

Problem

Analysis of the . . .

Resulting Formula for...

Remaining Open...

Home Page

Title Page

Page 13 of 21

Go Back

Full Screen

Close

13. Resulting Formula for the Reaction Rate

• The reaction rate is proportional to

$$E \stackrel{\text{def}}{=} \exp(-(\lambda_A + \lambda_B)) \cdot \sum_{k=1}^{\infty} \left(\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!} \right) \cdot \left(\sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!} \right).$$

• For a reaction between three or more substances $A + ... + B \rightarrow ...$, we similarly get a formula

$$E = \exp(-(\lambda_A + \dots \lambda_B)) \cdot \sum_{k=1}^{\infty} \left(\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!} \right) \cdot \dots \cdot \left(\sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!} \right).$$

• These formulas can be simplified if we use the incomplete Gamma-function

$$\Gamma(s,x) \stackrel{\text{def}}{=} \int_{r}^{\infty} t^{s-1} \cdot \exp(-t) dt.$$

• For this function, $\exp(-\lambda) \cdot \sum_{\ell=0}^{s-1} \frac{\lambda^{\ell}}{\ell!} = \frac{\Gamma(s,\lambda)}{(s-1)!}$.

Chemical Kinetics: . . .

How Formulas of . . .

Case of High...

Example

Use of High-...

Problem

Analysis of the...

Resulting Formula for...

Remaining Open...

Home Page

Title Page

Page 14 of 21

Go Back

Full Screen

Close

Formula Simplified

- Reminder: $\exp(-\lambda) \cdot \sum_{\ell=0}^{s-1} \frac{\lambda^{\ell}}{\ell!} = \frac{\Gamma(s,\lambda)}{(s-1)!}$.
- Since $\exp(\lambda) = \sum_{\ell=0}^{\infty} \frac{\lambda^{\ell}}{\ell!}$, we have $\exp(-\lambda) \cdot \sum_{\ell=0}^{\infty} \frac{\lambda^{\ell}}{\ell!} = 1$, hence $\exp(-\lambda) \cdot \sum_{l=0}^{\infty} \frac{\lambda^{l}}{\ell!} = 1 - \frac{\Gamma(s,\lambda)}{(s-1)!}$.
- Thus, for two substances, we have:

$$E = \sum_{k=1}^{\infty} \left(1 - \frac{\Gamma(k, \lambda_A)}{(k-1)!} \right) \cdot \left(1 - \frac{\Gamma(k, \lambda_B)}{(k-1)!} \right).$$

• In general:

$$E = \sum_{k=1}^{\infty} \left(1 - \frac{\Gamma(k, \lambda_A)}{(k-1)!} \right) \cdot \ldots \cdot \left(1 - \frac{\Gamma(k, \lambda_B)}{(k-1)!} \right).$$

Chemical Kinetics: . . .

How Formulas of . . .

Case of High . . .

Example

Use of High-...

Problem

Analysis of the . . .

Resulting Formula for . . .

Remaining Open . . .

Home Page

Title Page **>>**

Page 15 of 21

Go Back

Full Screen

Close

- Here, $E \stackrel{\text{def}}{=} \exp(-(\lambda_A + \lambda_B)) \cdot \sum_{k=1}^{\infty} \left(\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!} \right) \cdot \left(\sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!} \right)$.
- When λ_A and λ_B are small, then $\exp(-(\lambda_A + \lambda_B))$ is approximately equal to 1.
- Also, terms proportional to λ_A^2 and to higher powers of λ_A can be safely ignored.
- So, $\sum_{\ell=1}^{\infty} \frac{\lambda_A^{\ell}}{\ell!} \approx \lambda_A$ and $\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!} \approx 0$ for k > 1.
- Similarly, $\sum_{\ell=1}^{\infty} \frac{\lambda_B^{\ell}}{\ell!} \approx \lambda_B$ and $\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!} \approx 0$ for k > 1.
- Thus, the above formula takes the form $E = \lambda_A \cdot \lambda_B$.
- Since $\lambda_A = c \cdot c_A$ and $\lambda_B = c \cdot c_B$, this means that in this case, the reaction rate is indeed $\sim c_A \cdot c_B$.

Chemical Kinetics: . . .

How Formulas of . . .

Case of High...

Example

Use of High-...

Problem

Analysis of the...

Resulting Formula for...

Remaining Open . . .

Home Page

Title Page

Page 16 of 21

Go Back

Full Screen

Close

16. Case of High Concentrations

- The largest of the terms $\frac{\lambda_A^{\ell}}{\ell!}$ can be found if we approximate $\ell!$ by the usual Stirling approximation $\ell! \approx \left(\frac{\ell}{e}\right)^{\ell}$.
- Then, each term $\frac{\lambda^{\ell}}{\ell!}$ reduces to $\left(\frac{\lambda \cdot e}{\ell}\right)^{\ell}$.
- This term is the largest when its logarithm L is the largest: $L \stackrel{\text{def}}{=} \ell \cdot (\ln(\lambda) + 1 \ln(\ell))$.
- Differentiating L with respect to ℓ and equating the resulting derivative to 0, we conclude that $\ell_0 = \lambda$.
- For this ℓ_0 , the term $\frac{\lambda^{\ell_0}}{\ell_0!} = \left(\frac{\lambda \cdot e}{\ell_0}\right)^{\ell_0}$ turns into $\exp(\lambda)$.
- Since $\exp(\lambda) = \sum_{\ell=0}^{\infty} \frac{\lambda^{\ell}}{\ell!}$, this means that all terms $\ell \neq \ell_0$ in this sum are much smaller.

Chemical Kinetics: . . .

How Formulas of . . .

Case of High...

Example

Use of High-...

Problem

Analysis of the...

Resulting Formula for...

Remaining Open...

Home Page

Title Page

Page 17 of 21

Go Back

Full Screen

Close

17. Case of High Concentrations (cont-d)

- Reminder: $\frac{\lambda^{\ell}}{\ell!} \ll \frac{\lambda^{\ell_0}}{\ell_0!}$ when $\ell \neq \ell_0$.
- Thus, all terms with $\ell \neq \ell_0 = \lambda$ can be ignored.
- We can therefore conclude that the ℓ_0 -th term is equal to $\exp(\ell_0)$, while all other terms are 0s.
- So, $\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!} = \exp(\lambda_A)$ when $\ell \leq \lambda_A$, else $\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!} = 0$.
- Also, $\sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!} = \exp(\lambda_B)$ when $\ell \leq \lambda_B$, else $\sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!} = 0$.
- In $E \stackrel{\text{def}}{=} \exp(-(\lambda_A + \lambda_B)) \cdot \sum_{k=1}^{\infty} \left(\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!}\right) \cdot \left(\sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!}\right)$, only products with $\ell \leq \min(\lambda_A, \lambda_B)$ are non-zeros.

Chemical Kinetics: . . .

How Formulas of . . .

Case of High...

Example

Use of High-...

Problem

Analysis of the...

Resulting Formula for...

Remaining Open . . .

Home Page

Title Page

Page 18 of 21

Go Back

Full Screen

Close

18. Case of High Concentrations (cont-d)

- Here, $E \stackrel{\text{def}}{=} \exp(-(\lambda_A + \lambda_B)) \cdot \sum_{k=1}^{\infty} \left(\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!}\right) \cdot \left(\sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!}\right)$, and only terms $\lambda \leq \min(\lambda_A, \lambda_B)$ are non-zeros.
- For such terms,

$$\sum_{\ell=k}^{\infty} \frac{\lambda_A^{\ell}}{\ell!} = \exp(\lambda_A) \text{ and } \sum_{\ell=k}^{\infty} \frac{\lambda_B^{\ell}}{\ell!} = \exp(\lambda_B).$$

- So, each of the $\min(\lambda_A, \lambda_B)$ non-zero terms is equal to $\exp(-(\lambda_A + \lambda_B)) \cdot \exp(\lambda_A) \cdot \exp(\lambda_B) = 1.$
- So, their sum is indeed $\approx \min(\lambda_A, \lambda_B)$.

Chemical Kinetics: . . . How Formulas of . . . Case of High . . . Example Use of High-... Problem Analysis of the . . . Resulting Formula for . . . Remaining Open . . . Home Page Title Page **>>** Page 19 of 21 Go Back Full Screen Close Quit

19. Remaining Open Questions

- Formulas similar to chemical kinetics equations are used in many different applications.
- Examples:
 - dynamics of biological species,
 - analysis of knowledge propagation.
- The above derivation of the intermediate "and"operation uses the specifics of chemical kinetics.
- It would be interesting:
 - to perform a similar analysis in other applications areas and
 - to see which "and"-operations are appropriate in these situations.

How Formulas of . . . Case of High . . . Example Use of High-... Problem Analysis of the . . . Resulting Formula for . . . Remaining Open . . . Home Page Title Page **>>** Page 20 of 21 Go Back Full Screen Close Quit

Chemical Kinetics: . . .

20. Acknowledgments

- This work was supported in part:
 - by the Brazil National Council Technological and Scientific Development CNPq,
 - by the US National Science Foundation grants:
 - * HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - * DUE-0926721, and
 - by an award from Prudential Foundation.
- This work was partly performed when V. Kreinovich was a visiting researcher in Brazil.

