Logic of Scientific Discovery: How Physical Induction Affects What Is Computable

Vladik Kreinovich and Olga Kosheleva University of Texas at El Paso 500 W. University El Paso, TX 79968, USA vladik@utep.edu, olgak@utep.edu

http://www.cs.utep.edu/vladik http://www.cs.utep.edu/vladik/olgavita.html

1. Outline

- Most of our knowledge about a physical world comes from *physical induction*:
 - if a hypothesis is confirmed by a sufficient number of observations,
 - we conclude that this hypothesis is universally true.
- We show that a natural formalization of this property affects what is computable.
- We explain how this formalization is related to Kolmogorov complexity and randomness.
- We also consider computational consequences of an alternative idea also coming from physics:
 - that no physical law is absolutely true,
 - that every physical law will sooner or later need to be corrected.

Physical Induction: Main Idea

- How do we come up with physical laws?
- Someone formulates a hypothesis.
- This hypothesis is tested, and if it confirmed sufficiently many times.
- Then we conclude that this hypothesis is indeed a universal physical law.
- This conclusion is known as physical induction.
- Different physicists may disagree on how many experiments we need to become certain.
- However, most physicists would agree that:
 - after sufficiently many confirmations,
 - the hypothesis should be accepted as a physical law.
- Example: normal distribution :-)

How to Describe . . .

Physical Induction: . . .

Checking Equality of . .

Finding Roots

Optimization

Computing Fixed Points

Randomness and . . .

Random Sequences . . . Alternative Idea: No . .

Home Page

Title Page

>>

Page 3 of 39

Go Back

Full Screen

Close

Quit

3. How to Describe Physical Induction in Precise Terms

- Let s denote the state of the world, and let P(s, i) indicate that the property P holds in the i-th experiment.
- In these terms, physical induction means that for every property P, there is an integer N such that:
 - if the statements $P(s, 1), \ldots, P(s, N)$ are all true,
 - then the property P holds for all possible experiments i.e., we have $\forall n P(s, n)$.
- This cannot be true for all mathematically possible states: we can have $P(s, 1), \ldots, P(s, N)$ and $\neg P(s, N + 1)$.
- Our understanding of the physicists' claims is that:
 - if we restrict ourselves to physically meaningful states,
 - then physical induction is true.

4. Resulting Definition

- Let S be a set; its elements will be called states of the world.
- Let $T \subseteq S$ be a subset of S. We say that T consists of physically meaningful states if:
 - for every property P, there exists an integer N_P such that
 - for each state $s \in T$ for which P(s, i) holds for all $i \leq N_P$, we have $\forall n P(s, n)$.
- For this definition to be precise, we need to select a theory \mathcal{L} which is:
 - rich enough to contain all physicists' arguments and
 - weak enough so that we will be able to formally talk about definability in \mathcal{L} .

5. Definition: Equivalent Form

- We can reformulate this definition in terms of definable sets, i.e.:
 - sets of the type $\{x: P(x)\}$
 - corresponding to definable properties P(x).
- Let S be a set; its elements will be called *states of the* world.
- Let $T \subseteq S$ be a subset of S. We say that T consists of physically meaningful states if:
 - for every definable sequence of sets $\{A_n\}$, there exists an integer N_A
 - such that $T \cap \bigcap_{n=1}^{N_A} A_n = T \cap \bigcap_{n=1}^{\infty} A_n$.

6. Existence Proof

- There are no more than countably many words, so no more than countably many definable sequences.
- For real numbers, we can enumerate all definable sequence, as $\{A_n^1\}$, $\{A_n^2\}$, ... Let us pick $\varepsilon \in (0,1)$.
- For each k, for the difference sets $D_n^k \stackrel{\text{def}}{=} \bigcap_{i=1}^n A_n^k \bigcap_{i=1}^\infty A_n^k$, we have $D_{n+1}^k \subseteq D_n^k$ and $\bigcap_{n=1}^\infty D_n^k = \emptyset$, thus, $\mu(D_n^k) \to 0$.
- Hence, there exists n_k for which $\mu\left(D_{n_k}^k\right) \leq 2^{-k} \cdot \varepsilon$.
- We then take $T = S \bigcup_{k=1}^{\infty} D_{n_k}^k$.
- Here, $\mu\left(\bigcup_{k=1}^{\infty} D_{n_k}^k\right) \leq \sum_{k=1}^{\infty} \mu\left(D_{n_k}^k\right) \leq \sum_{k=1}^{\infty} 2^{-k} \cdot \varepsilon = \varepsilon < 1$, and thus, the difference T is non-empty.
- For this set T, we can take $N_{A^k} = n_k$.

Physical Induction: . . .

How to Describe . . .

Checking Equality of . .

Finding Roots

Optimization

Computing Fixed Points

Randomness and . . .

Random Sequences . . .

Alternative Idea: No...
Home Page

Title Page

Page 7 of 39

, ugo

Go Back

Full Screen

Close

Quit

7. From States of the World to Specific Quantities

- Usually, we only have a partial information about a state: we have a definable f-n $f: S \to X$ which maps
 - every state of the world
 - into the corresponding partial information.
- Then the range f(T) corresponding to all physically meaningful states has the same property as T:
- Let a set $T \subseteq S$ consist of physically meaningful states, and let $f: S \to X$ be a definable function.
- Then, for every definable sequence of subsets $B_n \subseteq X$, there exists an integer N_B such that

$$f(T) \cap \bigcap_{n=1}^{N_B} B_n = f(T) \cap \bigcap_{n=1}^{\infty} B_n.$$

8. Proof

- We want to prove that for some N_B ,
 - if an element $x \in f(T)$ belongs to the sets B_1, \ldots, B_{N_B} ,
 - then $x \in B_n$ for all n.
- An arbitrary element $x \in f(T)$ has the form x = f(s) for some $s \in T$.
- Let us take $A_n \stackrel{\text{def}}{=} f^{-1}(B_n)$.
- Since T consists of physically meaningful states, there exists an appropriate integer N_A .
- Let us take $N_B \stackrel{\text{def}}{=} N_A$.
- By definition of A_n , the condition $x = f(s) \in B_i$ implies that $s \in A_i$; so we have $s \in A_i$ for all $i \leq N_A$.
- Thus, we have $s \in A_n$ for all n, which implies that $x = f(s) \in B_n$. Q.E.D.

How to Describe...

Physical Induction: . . .

Checking Equality of . .

Finding Roots

Optimization

, ,

Randomness and . . .

Random Sequences...

Computing Fixed Points

Alternative Idea: No . .

Home Page

Title Page

→

Page 9 of 39

Go Back

Full Screen

Clo

Close

Quit

9. Computations with Real Numbers: Reminder

- \bullet From the physical viewpoint, real numbers x describe values of different quantities.
- We get values of real numbers by measurements.
- Measurements are never 100% accurate, so after a measurement, we get an approximate value r_k of x.
- In principle, we can measure x with higher and higher accuracy.
- So, from the computational viewpoint, a real number is a sequence of rational numbers r_k for which, e.g.,

$$|x - r_k| \le 2^{-k}.$$

- By an algorithm processing real numbers, we mean an algorithm using r_k as an "oracle" (subroutine).
- This is how computations with real numbers are defined in *computable analysis*.

10. Checking Equality of Real Numbers

- *Known:* equality of real numbers is undecidable.
- For physically meaningful real numbers, however, a deciding algorithm *is* possible:
 - for every set $T \subseteq \mathbb{R}^2$ which consists of physically meaningful pairs (x, y) of real numbers,
 - there exists an algorithm deciding whether x = y.
- Proof: We can take $A_n = \{(x,y) : 0 < |x-y| < 2^{-n}\}$. The intersection of all these sets is empty.
- Hence, T has no elements from $\bigcap_{n=1}^{N_A} A_n = A_{N_A}$.
- Thus, for each $(x, y) \in T$, x = y or $|x y| \ge 2^{-N_A}$.
- We can detect this by taking $2^{-(N_A+3)}$ -approximations x' and y' to x and y. Q.E.D.

How to Describe . . . Checking Equality of . . Finding Roots Optimization Computing Fixed Points Randomness and . . . Random Sequences . . . Alternative Idea: No . . . Home Page Title Page **>>** Page 11 of 39 Go Back Full Screen Close

Quit

Physical Induction: . . .

11. Finding Roots

- In general, it is not possible, given a f-n f(x) attaining negative and positive values, to compute its root.
- This becomes possible if we restrict ourselves to physically meaningful functions:
- Let K be a computable compact.
- Let X be the set of all functions $f: K \to \mathbb{R}$ that attain 0 value somewhere on K. Then:
 - for every set $T \subseteq X$ consisting of physically meaningful functions and for every $\varepsilon > 0$,
 - there is an algorithm that, given a f-n $f \in T$, computes an ε -approximation to the set of roots

$$R \stackrel{\text{def}}{=} \{x : f(x) = 0\}.$$

• In particular, we can compute an ε -approximation to one of the roots.

12. Finding Roots: Proof

- To compute the set $R = \{x : f(x) = 0\}$ with accuracy $\varepsilon > 0$, let us take an $(\varepsilon/2)$ -net $\{x_1, \ldots, x_n\} \subseteq K$.
- For each i, we can compute $\varepsilon' \in (\varepsilon/2, \varepsilon)$ for which $B_i \stackrel{\text{def}}{=} \{x : d(x, x_i) \leq \varepsilon'\}$ is a computable compact set.
- It is possible to algorithmically compute the minimum of a function on a computable compact set.
- Thus, we can compute $m_i \stackrel{\text{def}}{=} \min\{|f(x)| : x \in B_i\}.$
- Since $f \in T$, similarly to the previous proof, we can prove that $\exists N \, \forall f \in T \, \forall i \, (m_i = 0 \vee m_i \geq 2^{-N})$.
- Comp. m_i w/acc. $2^{-(N+2)}$, we check $m_i = 0$ or $m_i > 0$.
- Let's prove that $d_H(R, \{x_i : m_i = 0\}) \leq \varepsilon$, i.e., that $\forall i \ (m_i = 0 \Rightarrow \exists x \ (f(x) = 0 \& d(x, x_i) \leq \varepsilon))$ and $\forall x \ (f(x) = 0 \Rightarrow \exists i \ (m_i = 0 \& d(x, x_i) \leq \varepsilon))$.

Physical Induction: . . . How to Describe . . . Checking Equality of . . Finding Roots Optimization Computing Fixed Points Randomness and . . . Random Sequences . . . Alternative Idea: No . . . Home Page Title Page **>>** Page 13 of 39 Go Back Full Screen Close Quit

13. Finding Roots: Proof (cont-d)

- $m_i = 0$ means $\min\{|f(x)| : x \in B_i \stackrel{\text{def}}{=} B_{\varepsilon'}(x_i)\} = 0.$
- Since the set K is compact, this value 0 is attained, i.e., there exists a value $x \in B_i$ for which f(x) = 0.
- From $x \in B_i$, we conclude that $d(x, x_i) \leq \varepsilon'$ and, since $\varepsilon' < \varepsilon$, that $d(x, x_i) < \varepsilon$.
- Thus, x_i is ε -close to the root x.
- Vice versa, let x be a root, i.e., let f(x) = 0.
- Since the points x_i form an $(\varepsilon/2)$ -net, there exists an index i for which $d(x, x_i) \leq \varepsilon/2$.
- Since $\varepsilon/2 < \varepsilon'$, this means that $d(x, x_i) \le \varepsilon'$ and thus, $x \in B_i$.
- Therefore, $m_i = \min\{|f(x)| : x \in B_i\} = 0$. So, the root x is ε -close to a point x_i for which $m_i = 0$.

Physical Induction: . . . How to Describe . . . Checking Equality of . . Finding Roots Optimization Computing Fixed Points Randomness and . . . Random Sequences . . . Alternative Idea: No . . Home Page Title Page **>>** Page 14 of 39 Go Back Full Screen Close Quit

14. Optimization

- In general, it is not algorithmically possible to find x where f(x) attains maximum.
- Let K be a computable compact. Let X be the set of all functions $f: K \to \mathbb{R}$. Then:
 - for every set $T \subseteq X$ consisting of physically meaningful functions and for every $\varepsilon > 0$,
 - there is an algorithm that, given a f-n $f \in T$, computes an ε -approx. to $S = \left\{ x : f(x) = \max_{y} f(y) \right\}$.
- In particular, we can compute an approximation to an individual $x \in S$.
- Reduction to roots: $f(x) = \max_{y} f(y)$ iff g(x) = 0, where $g(x) \stackrel{\text{def}}{=} f(x) - \max_{y} f(y)$.

15. Computing Fixed Points

- In general, it is not possible to compute all the fixed points of a given computable function f(x).
- Let K be a computable compact. Let X be the set of all functions $f: K \to K$. Then:
 - for every set $T \subseteq X$ consisting of physically meaningful functions and for every $\varepsilon > 0$,
 - there is an algorithm that, given a f-n $f \in T$, computes an ε -approximation to the set $\{x : f(x) = x\}$.
- In particular, we can compute an approximation to an individual fixed point.
- Reduction to roots: f(x) = x iff g(x) = 0, where $g(x) \stackrel{\text{def}}{=} d(f(x), x)$.

16. Computing Limits

- In general: it is not algorithmically possible to find a limit $\lim a_n$ of a convergent computable sequence.
- Let K be a computable compact. Let X be the set of all convergent sequences $a = \{a_n\}, a_n \in K$. Then:
 - for every set $T \subseteq X$ consisting of physically meaningful functions and for every $\varepsilon > 0$,
 - there exists an algorithm that, given a sequence $a \in T$, computes its limit with accuracy ε .
- *Use:* this enables us to compute limits of iterations and sums of Taylor series (frequent in physics).
- Main idea: for every $\varepsilon > 0$ there exists $\delta > 0$ such that when $|a_n a_{n-1}| \le \delta$, then $|a_n \lim a_n| \le \varepsilon$.
- *Intuitively:* we stop when two consequent iterations are close to each other.

17. Random Sequences: Reminder

- If a sequence s is random, it satisfies all the probability laws such as the law of large numbers.
- If a sequence satisfies all probability laws, then for all practical purposes we can consider it random.
- Thus, we can define a sequence to be random if it satisfies all probability laws.
- A probability law is a statement S which is true with probability 1: P(S) = 1.
- So, a sequence is random if it belongs to all definable sets of measure 1.
- A sequence belongs to a set of measure 1 iff it does not belong to its complement C = -S with P(C) = 0.
- So, a sequence is random if it does not belong to any definable set of measure 0.

18. Randomness and Kolmogorov Complexity

- Different definabilities lead to different randomness.
- When definable means computable, randomness can be described in terms of Kolmogorov complexity

$$K(x) \stackrel{\text{def}}{=} \min\{\text{len}(p) : p \text{ generates } x\}.$$

• Crudely speaking, an infinite string $s = s_1 s_2 \dots$ is random if, for some constant C > 0, we have

$$\forall n (K(s_1 \dots s_n) \geq n - C).$$

• Indeed, if a sequence $s_1 ldots s_n$ is truly random, then the only way to generate it is to explicitly print it:

$$print(s_1 \dots s_n).$$

• In contrast, a sequence like 0101...01 generated by a short program is clearly not random.

19. From Kolmogorov-Martin-Löf Theoretical Randomness to a More Physical One

- The above definition means that (definable) events with probability 0 cannot happen.
- In practice, physicists also assume that events with a *very small* probability cannot happen.
- For example, a kettle on a cold stove will not boil by itself but the probability is non-zero.
- If a coin falls head 100 times in a row, any reasonable person will conclude that this coin is not fair.
- It is not possible to formalize this idea by simply setting a threshold $p_0 > 0$ below which events are not possible.
- Indeed, then, for N for which $2^{-N} < p_0$, no sequence of N heads or tails would be possible at all.

20. From Kolmogorov-Martin-Löf Theoretical Randomness to a More Physical One (cont-d)

- We cannot have a universal threshold p_0 such that events with probability $\leq p_0$ cannot happen.
- However, we know that:
 - for each decreasing $(A_n \supseteq A_{n+1})$ sequence of properties A_n with $\lim p(A_n) = 0$,
 - there exists an N above which a truly random sequence cannot belong to A_N .
- Resulting definition: we say that \mathcal{R} is a set of random elements if
 - for every definable decreasing sequence $\{A_n\}$ for which $\lim P(A_n) = 0$,
 - there exists an N for which $\mathcal{R} \cap A_N = \emptyset$.

21. Random Sequences and Physically Meaningful Sequences

- Let \mathcal{R}_K denote the set of all elements which are random in Kolmorogov-Martin-Löf sense. Then:
- Every set of random elements consists of physically meaningful elements.
- For every set T of physically meaningful elements, the intersection $T \cap \mathcal{R}_K$ is a set of random elements.
- Proof: When A_n is definable, for $D_n \stackrel{\text{def}}{=} \bigcap_{i=1}^n A_i \bigcap_{i=1}^\infty A_i$, we have $D_n \supseteq D_{n+1}$ and $\bigcap_{i=1}^\infty D_n = \emptyset$, so $P(D_n) \to 0$.
- Therefore, there exists an N for which the set of random elements does not contain any elements from D_N .
- Thus, every set of random elements indeed consists of physically meaningful elements.

How to Describe . . . Checking Equality of . . Finding Roots Optimization Computing Fixed Points Randomness and . . . Random Sequences . . . Alternative Idea: No . . . Home Page Title Page **>>** Page 22 of 39 Go Back Full Screen Close Quit

Physical Induction: . . .

22. Proof (cont-d)

- Let T consist of physically meaningful elements. Let us prove that $\mathcal{T} \cap \mathcal{R}_K$ is a set of random elements.
- If $A_n \supseteq A_{n+1}$ and $P\left(\bigcap_{n=1}^{\infty} A_n\right) = 0$, then for $B_m \stackrel{\text{def}}{=} A_m \bigcap_{n=1}^{\infty} A_n$, we have $B_m \supseteq B_{m+1}$ and $\bigcap_{n=1}^{\infty} B_n = \emptyset$.
- Thus, by definition of a set consisting of physically meaningful elements, we conclude that $B_N \cap T = \emptyset$.
- Since $P\left(\bigcap_{n=1}^{\infty} A_n\right) = 0$, we also know that $\left(\bigcap_{n=1}^{\infty} A_n\right) \cap \mathcal{R}_K = \emptyset$.
- Thus, $A_N = B_N \cup \left(\bigcap_{n=1}^{\infty} A_n\right)$ has no common elements with the intersection $T \cap \mathcal{R}_K$. Q.E.D.

23. Random Sequences: Conclusion

- Kolmogorov-Martin-Löf randomness means that events with probability 0 cannot occur.
- Physicists also argue that events with a *sufficiently* small probability cannot occur.
- Physical induction means that every sequence belongs to a set S of physically meaningful sequences.
- In particular, a physical Kolmogorov-Martin-Löf random sequence s must belong to the set S.
- The above result shows that this sequence s is random in the physical sense as well.
- In other words, physical induction implies that events with a sufficiently small probability cannot occur.

24. Additional Consequence

- Main *objectives* of science:
 - guaranteed estimates for physical quantities;
 - guaranteed predictions for these quantities.
- *Problem:* estimation and prediction are ill-posed.
- Example:
 - measurement devices are inertial;
 - hence suppress high frequencies ω ;
 - so $\varphi(x)$ and $\varphi(x) + \sin(\omega \cdot t)$ are indistinguishable.
- Existing approaches:
 - statistical regularization (filtering);
 - Tikhonov regularization (e.g., $|\dot{x}| \leq \Delta$);
 - expert-based regularization.
- *Main problem:* no guarantee.

How to Describe...

Checking Equality of...

Finding Roots

Physical Induction: . . .

Optimization

Computing Fixed Points

Random Sequences...

Randomness and . . .

Alternative Idea: No . .

Home Page

Title Page

Page 25 of 39

Go Back

Full Screen

Full Screen

Close

Quit

25. On Physically Meaningful Solutions, Problems Become Well-Posed

- State estimation an ill-posed problem:
 - Measurement f: state $s \in S \to \text{observation } r = f(s) \in R$.
 - In principle, we can reconstruct $r \to s$: as $s = f^{-1}(r)$.
 - Problem: small changes in r can lead to huge changes in s (f^{-1} not continuous).
- Theorem:
 - Let S be a definably separable metric space.
 - Let \mathcal{T} be a set of physically meaningful elements of S.
 - Let $f: S \to R$ be a continuous 1-1 function.
 - Then, the inverse mapping $f^{-1}: R \to S$ is continuous for every $r \in f(\mathcal{T})$.

How to Describe . . . Checking Equality of . . Finding Roots Optimization Computing Fixed Points Randomness and . . . Random Sequences . . . Alternative Idea: No . . Home Page Title Page **>>** Page 26 of 39 Go Back Full Screen Close

Quit

Physical Induction: . . .

26. Everything is Related – Einstein-Podolsky-Rosen (EPR) Paradox

- Due to *Relativity Theory*, two spatially separated simultaneous events cannot influence each other.
- Einstein, Podolsky, and Rosen intended to show that in quantum physics, such influence is possible.
- In formal terms, let x and x' be measured values at these two events.
- Independence means that possible values of x do not depend on x', i.e., $S = X \times X'$ for some X and X'.
- Physical induction implies that the pair (x, x') belongs to a set S of physically meaningful pairs.
- Theorem: The set S cannot be represented as $X \times X'$.
- Thus, everything is related but we probably can't use this relation to pass information (S isn't computable).

Physical Induction: . . . How to Describe . . . Checking Equality of . . Finding Roots Optimization Computing Fixed Points Randomness and . . . Random Sequences . . . Alternative Idea: No . . . Home Page Title Page **>>** Page 27 of 39 Go Back Full Screen Close Quit

27. Alternative Idea: No Physical Theory Is Perfect

- Physical induction implies that a physical law is universally valid.
- However, in the history of physics,
 - always new observations appear
 - which are not fully consistent with the original theory.
- Thus, many physicists believe that every physical theory is approximate.
- For each theory T, inevitably new observations will surface which require a modification of T.
- Let us analyze how this idea affects computations.

28. No Physical Theory Is Perfect: How to Formalize This Idea

- Statement: for every theory, eventually there will be observations which violate this theory.
- To formalize this statement, we need to formalize what are *observations* and what is a *theory*.
- Each observation can be represented, in the computer, as a sequence of 0s and 1s.
- Most sensors already produce the signal in the computerreadable form, as a sequence of 0s and 1s.
- Thus, all past and future observations form a (potentially) infinite sequence $\omega = \omega_1 \omega_2 \dots$ of 0s and 1s.
- A physical *theory* may be very complex.
- All we care about is which sequences of observations ω are consistent with this theory and which are not.

29. What Is a Physical Theory? (cont-d)

- So, a physical theory T can be defined as the set of all sequences ω which are consistent with this theory.
- A physical theory must have at least one possible sequence of observations: $T \neq \emptyset$.
- A theory must be described by a finite sequence of symbols: the set T must be definable.
- How can we check that an infinite sequence $\omega = \omega_1 \omega_2 \dots$ is consistent with the theory?
- The only way is check that for every n, the sequence $\omega_1 \dots \omega_n$ is consistent with T; so:

$$\forall n \,\exists \omega^{(n)} \in T \,(\omega_1^{(n)} \ldots \omega_n^{(n)} = \omega_1 \ldots \omega_n) \Rightarrow \omega \in T.$$

• In mathematical terms, this means that T is closed in the Baire metric $d(\omega, \omega') \stackrel{\text{def}}{=} 2^{-N(\omega, \omega')}$, where

$$N(\omega, \omega') \stackrel{\text{def}}{=} \max\{k : \omega_1 \dots \omega_k = \omega'_1 \dots \omega'_k\}.$$

How to Describe . . . Checking Equality of . . Finding Roots Optimization Computing Fixed Points Randomness and . . . Random Sequences . . . Alternative Idea: No . . Home Page Title Page **>>** Page 30 of 39 Go Back Full Screen Close Quit

Physical Induction: . . .

30. What Is a Physical Theory: Final Definition

- A theory must predict something new.
- So, for every sequence $\omega_1 \dots \omega_n$ consistent with T, there is a continuation which does not belong to T.
- In mathematical terms, T is nowhere dense.
- By a physical theory, we mean a non-empty closed nowhere dense definable set T.
- A sequence ω is consistent with the no-perfect-theory principle if it does not belong to any physical theory.
- In precise terms, ω does not belong to the union of all definable closed nowhere dense set.
- There are countably many definable set, so this union is $meager (= Baire first \ category)$.
- Thus, due to Baire Theorem, such sequences ω exist.

How to Describe . . . Checking Equality of . . Finding Roots Optimization Computing Fixed Points Randomness and . . . Random Sequences . . . Alternative Idea: No . . . Home Page Title Page **>>** Page 31 of 39 Go Back Full Screen Close Quit

Physical Induction: . . .

31. How to Describe General Computations

- Each computation is a solution to a well-defined problem.
- As a result, each bit in the resulting answer satisfies a well-defined mathematical property.
- All mathematical properties can be described, e.g., in terms of Zermelo-Fraenkel set theory ZF.
- So, each bit in each computation result can be viewed as the truth value of some statement formulated in ZF.
- Let α_n denote the truth value of the *n*-th ZF statement.
- In these terms, each computation partially compute the sequence $\alpha = \alpha_1 \dots \alpha_n \dots$

32. Relative Kolmogorov Complexity

- The usual notion of Kolmogorov complexity provides the complexity of computing x "from scratch".
- \bullet Suppose we have a (potentially infinite) sequence y.
- Relative Kolmogorov complexity K(x | y) can be used to describe the relative complexity of computing x.
- This relative complexity is based on programs which are allowed to use y as a subroutine.
- When we compute the length of such programs, we do not count the auxiliary program computing y_n .
- K(x | y) is then defined as the shortest length of such a y-using program which computes x.
- If x and y are unrelated, then $K(x | y) \approx K(x)$.
- If $K(x | y) \ll K(x)$, then y helps compute x.

33. Computations Under No-Perfect-Theory Principle: Main Result

- Let us show that under the no-perfect-theory principle, observations do indeed enhance computations.
- Let α be a sequence of truth values of ZF statements.
- Let ω be an infinite binary sequence which is consistent with the no-perfect-theory principle.
- Then, for every integer C > 0, there exists an integer n for which $K(\alpha_1 \dots \alpha_n | \omega) < K(\alpha_1 \dots \alpha_n) C$.
- In other words, in principle, we can have an arbitrary large enhancement.

34. Proof: Main Ideas

- We need to prove: $K(\alpha_1 \dots \alpha_n \mid \omega) < K(\alpha_1 \dots \alpha_n) C$.
- For that, we prove that the set T of all sequences for which $K(\alpha_1 \dots \alpha_n | \omega) \ge K(\alpha_1 \dots \alpha_n) C$ is a theory.
- The set T is clearly non-empty: it contains, e.g., $\omega = 00...0...$ which does not affect computations.
- \bullet The set T is also definable: we have just defined it.
- The fact that computations involve only finitely many bits of ω can be used to prove that T is closed.
- To prove that T is nowhere dense, we can extend each sequence $\omega_1 \dots \omega_m$ with α_i 's: $\omega' \stackrel{\text{def}}{=} \omega_1 \dots \omega_n \alpha_1 \alpha_2 \dots$
- For this new sequence ω' , computing $\alpha_1 \dots \alpha_n$ is easy: just copy α_i , so $K(\alpha_1 \dots \alpha_n | \omega') \ll K(\alpha_1 \dots \alpha_n) C$.

35. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721.
- The authors are thankful:
 - to Luc Longpré, Sergei Soloviev, and
 Michael Zakharevich for valuable discussions.
 - to the anonymous referees for useful suggestions, and
 - to Oleg Prosorov for his help.

36. A Formal Definition of Definable Sets

- Let \mathcal{L} be a theory.
- Let P(x) be a formula from \mathcal{L} for which the set $\{x \mid P(x)\}$ exists.
- We will then call the set $\{x \mid P(x)\}\ \mathcal{L}$ -definable.
- Crudely speaking, a set is \mathcal{L} -definable if we can explicitly define it in \mathcal{L} .
- All usual sets are definable: \mathbb{N} , \mathbb{R} , etc.
- Not every set is \mathcal{L} -definable:
 - every \mathcal{L} -definable set is uniquely determined by a text P(x) in the language of set theory;
 - there are only countably many texts and therefore, there are only countably many \mathcal{L} -definable sets;
 - so, some sets of natural numbers are not definable.

How to Describe . . . Checking Equality of . . Finding Roots Optimization Computing Fixed Points Randomness and . . . Random Sequences . . . Alternative Idea: No . . Home Page Title Page **>>** Page 37 of 39 Go Back Full Screen Close Quit

Physical Induction: . . .

37. How to Prove Results About Definable Sets

- Our objective is to be able to make mathematical statements about \mathcal{L} -definable sets. Therefore:
 - in addition to the theory \mathcal{L} ,
 - we must have a stronger theory \mathcal{M} in which the class of all \mathcal{L} -definable sets is a countable set.
- For every formula F from the theory \mathcal{L} , we denote its Gödel number by |F|.
- We say that a theory \mathcal{M} is stronger than \mathcal{L} if:
 - $-\mathcal{M}$ contains all formulas, all axioms, and all deduction rules from \mathcal{L} , and
 - \mathcal{M} contains a predicate def(n, x) such that for every formula P(x) from \mathcal{L} with one free variable,

$$\mathcal{M} \vdash \forall y (\operatorname{def}(\lfloor P(x) \rfloor, y) \leftrightarrow P(y)).$$

38. Existence of a Stronger Theory

- \bullet As \mathcal{M} , we take \mathcal{L} plus all above equivalence formulas.
- Is \mathcal{M} consistent?
- Due to compactness, we prove that for any $P_1(x), \ldots, P_m(x)$, \mathcal{L} is consistent with the equivalences corr. to $P_i(x)$.
- Indeed, we can take

$$def(n,y) \leftrightarrow (n = \lfloor P_1(x) \rfloor \& P_1(y)) \lor \ldots \lor (n = \lfloor P_m(x) \rfloor \& P_m(y)).$$

- This formula is definable in \mathcal{L} and satisfies all m equivalence properties.
- Thus, the existence of a stronger theory is proven.
- The notion of an \mathcal{L} -definable set can be expressed in \mathcal{M} : S is \mathcal{L} -definable iff $\exists n \in \mathbb{N} \, \forall y \, (\text{def}(n, y) \leftrightarrow y \in S)$.
- So, all statements involving definability become statements from the \mathcal{M} itself, not from metalanguage.

Physical Induction:...
How to Describe...
Checking Equality of...
Finding Roots
Optimization
Computing Fixed Points
Randomness and...
Random Sequences...
Alternative Idea: No...

Home Page

Title Page

44 >>>

◆

Page 39 of 39

Go Back

Full Screen

Close

Quit