Decision Making under Interval (and More General) Uncertainty: Monetary vs. Utility Approaches

Vladik Kreinovich University of Texas at El Paso El Paso, TX 79968, USA vladik@utep.edu

Need for Decision . . . When Monetary . . . Hurwicz Optimism- . . . Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is The Notion of Utility Group Decision . . . We Must Take . . . Home Page **>>** Page 1 of 99 Go Back Full Screen Close Quit

1. Outline

- Need for decision making under uncertainty
- Monetary approach: interval, probabilistic, fuzzy cases
- Utility-based approach
- Group decision making.
- Case study: selecting a location for a meteorological tower.

Part I
Need for Decision Making under
Uncertainty

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 3 of 99 Go Back

Full Screen

Close

2. Need for Decision Making

- In many practical situations:
 - we have several alternatives, and
 - we need to select one of these alternatives.

• Examples:

- a person saving for retirement needs to find the best way to invest money;
- a company needs to select a location for its new plant;
- a designer must select one of several possible designs for a new airplane;
- a medical doctor needs to select a treatment for a patient.

3. Need for Decision Making Under Uncertainty

- Decision making is easier if we know the exact consequences of each alternative selection.
- Often, however:
 - we only have an incomplete information about consequences of different alternative, and
 - we need to select an alternative under this uncertainty.

4. Real-Life Examples

- Decision theory was used to select a location of the Mexico City airport.
- On the one hand, the closer the airport to the city, the better.
- However, Mexico City is surrounded by mountains, including a volcano (Popo).
- Sometimes, the visibility is very low for flying.
- So, another option is to build is outside the valley.
- Then, we will be able to fly all the time.
- But the disadvantage is it will be far from the city.
- Additional aspect: we plan for the future, and future is uncertain.
- In the 1970s, Mexico asked specialists in decision theory to help.

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 6 of 99 Go Back Full Screen Close

5. Real-Life Examples (cont-d)

- Decision was made to build it in the city.
- It is very convenient: a metro line goes directly to it.
- And yes, sometimes flights are canceled.
- Another example: a network of radiotelescopes for VLBI.
- We want to be able to provide the best resolution for the objects.
- Problem: we do not know what we will see.
- The whole purpose of the network is to find new objects, beyond what we saw before.
- Third example: selecting a landing place for the first Moon landing.
- Uncertainty: we do not know the properties of the Lunar soil.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 7 of 99 Go Back Full Screen Close Quit

Part II
Monetary Approach: Interval,
Probabilistic, Fuzzy Cases

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 8 of 99 Go Back Full Screen Close Quit

6. When Monetary Approach Is Appropriate

- In many situations, e.g., in financial and economic decision making, the decision results:
 - either in a money gain (or loss) and/or
 - in the gain of goods that can be exchanged for money or for other goods.
- In this case, we select an alternative which the highest exchange value, i.e., the highest price u.
- Uncertainty means that we do not know the exact prices.
- The simplest case is when we only know lower and upper bounds on the price: $u \in [\underline{u}, \overline{u}]$.

7. Hurwicz Optimism-Pessimism Approach to Decision Making under Interval Uncertainty

• L. Hurwicz's idea is to select an alternative s.t.

$$\alpha_H \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{u} \to \max$$
.

- Here, $\alpha_H \in [0,1]$ described the optimism level of a decision maker:
 - $\alpha_H = 1$ means optimism;
 - $\alpha_H = 0$ means pessimism;
 - $0 < \alpha_H < 1$ combines optimism and pessimism.
- + This approach works well in practice.
- However, this is a semi-heuristic idea.
- ? It is desirable to come up with an approach which can be uniquely determined based first principles.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 10 of 99 Go Back Full Screen Close Quit

8. Numerical Example

- Suppose that we have two alternatives:
 - one in which we gain \$1,000 for sure, and
 - one in which we may gain \$2,500, but may gain nothing, and
 - we have no information about the probabilities of different gains.
- Which option should we choose?
- An optimist chooses the second alternative.
- A pessimist chooses the first alternative.
- For $\alpha = 0.5$, the second alternative is better:

$$\alpha \cdot \overline{u} + (1 - \alpha) \cdot \underline{u} = 0.5 \cdot 2500 + 0.5 \cdot 0 = 1250 > 1000.$$

• In general, for $\alpha > 0.4$, the second alternative is better, otherwise the first one.

9. Fair Price Approach: An Idea

- When we have a full information about an object, then:
 - we can express our desirability of each possible situation
 - by declaring a price that we are willing to pay to get involved in this situation.
- Once these prices are set, we simply select the alternative for which the participation price is the highest.
- In decision making under uncertainty, it is not easy to come up with a fair price.
- A natural idea is to develop techniques for producing such fair prices.
- These prices can then be used in decision making, to select an appropriate alternative.

10. Case of Interval Uncertainty

- Ideal case: we know the exact gain u of selecting an alternative.
- A more realistic case: we only know the lower bound \underline{u} and the upper bound \overline{u} on this gain.
- Comment: we do not know which values $u \in [\underline{u}, \overline{u}]$ are more probable or less probable.
- This situation is known as interval uncertainty.
- We want to assign, to each interval $[\underline{u}, \overline{u}]$, a number $P([\underline{u}, \overline{u}])$ describing the fair price of this interval.
- Since we know that $u \leq \overline{u}$, we have $P([\underline{u}, \overline{u}]) \leq \overline{u}$.
- Since we know that $\underline{u} \leq u$, we have $\underline{u} \leq P([\underline{u}, \overline{u}])$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 13 of 99 Go Back Full Screen Close Quit

11. Case of Interval Uncertainty: Monotonicity

- Case 1: we keep the lower endpoint \underline{u} intact but increase the upper bound.
- This means that we:
 - keeping all the previous possibilities, but
 - we allow new possibilities, with a higher gain.
- In this case, it is reasonable to require that the corresponding price not decrease:

if
$$\underline{u} = \underline{v}$$
 and $\overline{u} < \overline{v}$ then $P([\underline{u}, \overline{u}]) \le P([\underline{v}, \overline{v}])$.

- Case 2: we dismiss some low-gain alternatives.
- This should increase (or at least not decrease) the fair price:

```
if \underline{u} < \underline{v} and \overline{u} = \overline{v} then P([\underline{u}, \overline{u}]) \le P([\underline{v}, \overline{v}]).
```

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 14 of 99 Go Back Full Screen Close Quit

12. Additivity: Idea

- Let us consider the situation when we have two consequent independent decisions.
- We can consider two decision processes separately.
- We can also consider a single decision process in which we select a pair of alternatives:
 - the 1st alternative corr. to the 1st decision, and
 - the 2nd alternative corr. to the 2nd decision.
- If we are willing to pay:
 - the amount u to participate in the first process, and
 - the amount v to participate in the second decision process,
- then we should be willing to pay u + v to participate in both decision processes.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 15 of 99 Go Back Full Screen Close Quit

13. Additivity: Case of Interval Uncertainty

- About the gain u from the first alternative, we only know that this (unknown) gain is in $[\underline{u}, \overline{u}]$.
- About the gain v from the second alternative, we only know that this gain belongs to the interval $[\underline{v}, \overline{v}]$.
- The overall gain u + v can thus take any value from the interval

$$[\underline{u}, \overline{u}] + [\underline{v}, \overline{v}] \stackrel{\text{def}}{=} \{ u + v : u \in [\underline{u}, \overline{u}], v \in [\underline{v}, \overline{v}] \}.$$

• It is easy to check that

$$[\underline{u},\overline{u}] + [\underline{v},\overline{v}] = [\underline{u} + \underline{v},\overline{u} + \overline{v}].$$

• Thus, the additivity requirement about the fair prices takes the form

$$P([\underline{u} + \underline{v}, \overline{u} + \overline{v}]) = P([\underline{u}, \overline{u}]) + P([\underline{v}, \overline{v}]).$$

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 16 of 99 Go Back Full Screen Close Quit

- By a fair price under interval uncertainty, we mean a function $P([\underline{u}, \overline{u}])$ for which:
 - $\underline{u} \le P([\underline{u}, \overline{u}]) \le \overline{u} \text{ for all } \underline{u} \text{ and } \overline{u}$ (conservativeness);
 - if $\underline{u} = \underline{v}$ and $\overline{u} < \overline{v}$, then $P([\underline{u}, \overline{u}]) \leq P([\underline{v}, \overline{v}])$ (monotonicity);
 - (additivity) for all \underline{u} , \overline{u} , \underline{v} , and \overline{v} , we have

$$P([\underline{u} + \underline{v}, \overline{u} + \overline{v}]) = P([\underline{u}, \overline{u}]) + P([\underline{v}, \overline{v}]).$$

• *Theorem:* Each fair price under interval uncertainty has the form

$$P([\underline{u}, \overline{u}]) = \alpha_H \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{u} \text{ for some } \alpha_H \in [0, 1].$$

• Comment: we thus get a new justification of Hurwicz optimism-pessimism criterion.

Need for Decision...

When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval...

Monetary Approach Is...

The Notion of Utility

Group Decision . . .
We Must Take . . .

Home Page
Title Page

Page 17 of 99

Go Back

Full Screen

Close

15. Proof: Main Ideas

- Due to monotonicity, P([u, u]) = u.
- Due to monotonicity, $\alpha_H \stackrel{\text{def}}{=} P([0,1]) \in [0,1].$
- For [0,1] = [0,1/n] + ... + [0,1/n] (*n* times), additivity implies $\alpha_H = n \cdot P([0,1/n])$, so $P([0,1/n]) = \alpha_H \cdot (1/n)$.
- For [0, m/n] = [0, 1/n] + ... + [0, 1/n] (*m* times), additivity implies $P([0, m/n]) = \alpha_H \cdot (m/n)$.
- For each real number r, for each n, there is an m s.t. $m/n \le r \le (m+1)/n$.
- Monotonicity implies $\alpha_H \cdot (m/n) = P([0, m/n]) \le P([0, r]) \le P([0, (m+1)/n]) = \alpha_H \cdot ((m+1)/n).$
- When $n \to \infty$, $\alpha_H \cdot (m/n) \to \alpha_H \cdot r$ and $\alpha_H \cdot ((m+1)/n) \to \alpha_H \cdot r$, hence $P([0,r]) = \alpha_H \cdot r$.
- For $[\underline{u}, \overline{u}] = [\underline{u}, \underline{u}] + [0, \overline{u} \underline{u}]$, additivity implies $P([\underline{u}, \overline{u}]) = \underline{u} + \alpha_H \cdot (\overline{u} \underline{u})$. Q.E.D.

Need for Decision...

When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval...

Monetary Approach Is

The Notion of Utility

Group Decision...

We Must Take...

Home Page

Title Page

Page 18 of 99

Go Back

Full Screen

Clas

Close

16. Case of Set-Valued Uncertainty

- In some cases:
 - in addition to knowing that the actual gain belongs to the interval $[\underline{u}, \overline{u}]$,
 - we also know that some values from this interval cannot be possible values of this gain.
- For example:
 - if we buy an obscure lottery ticket for a simple prize-or-no-prize lottery from a remote country,
 - we either get the prize or lose the money.
- In this case, the set of possible values of the gain consists of two values.
- Instead of a (bounded) *interval* of possible values, we can consider a general bounded *set* of possible values.

17. Fair Price Under Set-Valued Uncertainty

- We want a function P that assigns, to every bounded closed set S, a real number P(S), for which:
 - $P([\underline{u}, \overline{u}]) = \alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u} \ (conservativeness);$
 - P(S + S') = P(S) + P(S'), where $S + S' \stackrel{\text{def}}{=} \{s + s' : s \in S, s' \in S'\}$ (additivity).
- Theorem: Each fair price under set uncertainty has the form $P(S) = \alpha_H \cdot \sup S + (1 \alpha_H) \cdot \inf S$.
- Proof: idea.
 - $\{\underline{s}, \overline{s}\} \subseteq S \subseteq [\underline{s}, \overline{s}]$, where $\underline{s} \stackrel{\text{def}}{=} \inf S$ and $\underline{s} \stackrel{\text{def}}{=} \sup S$;
 - thus, $[2\underline{s}, 2\overline{s}] = \{\underline{s}, \overline{s}\} + [\underline{s}, \overline{s}] \subseteq S + [\underline{s}, \overline{s}] \subseteq [\underline{s}, \overline{s}] + [\underline{s}, \overline{s}] = [2\underline{s}, 2\overline{s}];$
 - so $S + [\underline{s}, \overline{s}] = [2\underline{s}, 2\overline{s}]$, hence $P(S) + P([\underline{s}, \overline{s}]) = P([2\underline{s}, 2\overline{s}])$, and

$$P(S) = (\alpha_H \cdot (2\overline{s}) + (1 - \alpha_H) \cdot (2\underline{s})) - (\alpha_H \cdot \overline{s} + (1 - \alpha_H) \cdot \underline{s}).$$

Need for Decision...

When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval . . .

Monetary Approach Is
The Notion of Utility

Group Decision . . .

We Must Take...

Home Page

Title Page

Page 20 of 99

Go Back

Full Screen

Close

Close

18. Case of Probabilistic Uncertainty

- Suppose that for some financial instrument, we know a prob. distribution $\rho(x)$ on the set of possible gains x.
- What is the fair price P for this instrument?
- Due to additivity, the fair price for n copies of this instrument is $n \cdot P$.
- According to the Large Numbers Theorem, for large n, the average gain tends to the mean value

$$\mu = \int x \cdot \rho(x) \, dx.$$

- Thus, the fair price for n copies of the instrument is close to $n \cdot \mu$: $n \cdot P \approx n \cdot \mu$.
- The larger n, the closer the averages. So, in the limit, we get $P = \mu$.

19. Case of p-Box Uncertainty

- Probabilistic uncertainty means that for every x, we know the value of the cdf $F(x) = \text{Prob}(\eta \leq x)$.
- In practice, we often only have partial information about these values.
- In this case, for each x, we only know an interval $[\underline{F}(x), \overline{F}(x)]$ containing the actual (unknown) value F(x).
- The interval-valued function $[\underline{F}(x), \overline{F}(x)]$ is known as a p-box.
- What is the fair price of a p-box?
- The only information that we have about the cdf is that $F(x) \in [\underline{F}(x), \overline{F}(x)]$.
- For each possible F(x), for large n, n copies of the instrument are \approx equivalent to $n \cdot \mu$, $w/\mu = \int x \, dF(x)$.

20. Case of p-Box Uncertainty (cont-d)

• For each possible F(x), for large n, n copies of the instrument are \approx equivalent to $n \cdot \mu$, where

$$\mu = \int x \, dF(x).$$

- For different F(x), values of μ for an interval $[\underline{\mu}, \overline{\mu}]$, where $\mu = \int x \, d\overline{F}(x)$ and $\overline{\mu} = \int x \, d\underline{F}(x)$.
- Thus, the price of a p-box is equal to the price of an interval $[\mu, \overline{\mu}]$.
- We already know that this price is equal to

$$\alpha_H \cdot \overline{\mu} + (1 - \alpha_H) \cdot \mu.$$

• So, this is a fair price of a p-box.

- Sometimes, in addition to the interval $[\underline{x}, \overline{x}]$, we also have a "most probable" subinterval $[\underline{m}, \overline{m}] \subseteq [\underline{x}, \overline{x}]$.
- For such "twin intervals", addition is defined componentwise:

$$([\underline{x},\overline{x}],[\underline{m},\overline{m}])+([\underline{y},\overline{y}],[\underline{n},\overline{n}])=([\underline{x}+\underline{y},\overline{x}+\overline{y}],[\underline{m}+\underline{n},\overline{m}+\overline{n}]).$$

• Thus, the additivity for additivity requirement about the fair prices takes the form

$$P([\underline{x} + \underline{y}, \overline{x} + \overline{y}], [\underline{m} + \underline{n}, \overline{m} + \overline{n}]) =$$

$$P([\underline{x}, \overline{x}], [\underline{m}, \overline{m}]) + P([\underline{y}, \overline{y}], [\underline{n}, \overline{n}]).$$

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 24 of 99 Go Back Full Screen Close Quit

- $\underline{u} \leq P([\underline{u}, \overline{u}], [\underline{m}, \overline{m}]) \leq \overline{u} \text{ for all } \underline{u} \leq \underline{m} \leq \overline{m} \leq \overline{u}$ (conservativeness);
- if $\underline{u} \leq \underline{v}$, $\underline{m} \leq \underline{n}$, $\overline{m} \leq \overline{n}$, and $\overline{u} \leq \overline{v}$, then $P([\underline{u}, \overline{u}], [\underline{m}, \overline{m}]) \leq P([\underline{v}, \overline{v}], [\underline{n}, \overline{n}])$ (monotonicity);
- for all $\underline{u} \leq \underline{m} \leq \overline{m} \leq \overline{u}$ and $\underline{v} \leq \underline{n} \leq \overline{n} \leq \overline{v}$, we have additivity:

$$P([\underline{u}+\underline{v},\overline{u}+\overline{v}],[\underline{m}+\underline{n},\overline{m}+\overline{m}]) = P([\underline{u},\overline{u}],[\underline{m},\overline{m}]) + P([\underline{v},\overline{v}],[\underline{n},\overline{n}]).$$

- Theorem: Each fair price under twin uncertainty has the following form, for some $\alpha_L, \alpha_u, \alpha_U \in [0, 1]$:
- $P([\underline{u}, \overline{u}], [\underline{m}, \overline{m}]) = \underline{m} + \alpha_u \cdot (\overline{m} \underline{m}) + \alpha_U \cdot (U \overline{m}) + \alpha_L \cdot (\underline{u} \underline{m}).$

When Monetary...

Need for Decision . . .

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval . . .

Monetary Approach Is
The Notion of Utility

Group Decision . . .

We Must Take...

Title Page

Home Page

Page 25 of 99

Go Back

Full Screen

Close

23. Case of Fuzzy Numbers

- An expert is often imprecise ("fuzzy") about the possible values.
- For example, an expert may say that the gain is small.
- To describe such information, L. Zadeh introduced the notion of fuzzy numbers.
- For fuzzy numbers, different values u are possible with different degrees $\mu(u) \in [0, 1]$.
- The value w is a possible value of u + v if:
 - for some values u and v for which u + v = w,
 - \bullet u is a possible value of 1st gain, and
 - v is a possible value of 2nd gain.
- If we interpret "and" as min and "or" ("for some") as max, we get Zadeh's extension principle:

$$\mu(w) = \max_{u,v: u+v=w} \min(\mu_1(u), \mu_2(v)).$$

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 26 of 99 Go Back Full Screen Close Quit

24. Case of Fuzzy Numbers (cont-d)

- Reminder: $\mu(w) = \max_{u,v: u+v=w} \min(\mu_1(u), \mu_2(v)).$
- This operation is easiest to describe in terms of α -cuts

$$\mathbf{u}(\alpha) = [u^{-}(\alpha), u^{+}(\alpha)] \stackrel{\text{def}}{=} \{u : \mu(u) \ge \alpha\}.$$

• Namely, $\mathbf{w}(\alpha) = \mathbf{u}(\alpha) + \mathbf{v}(\alpha)$, i.e.,

$$w^{-}(\alpha) = u^{-}(\alpha) + v^{-}(\alpha)$$
 and $w^{+}(\alpha) = u^{+}(\alpha) + v^{+}(\alpha)$.

• For product (of probabilities), we similarly get

$$\mu(w) = \max_{u,v: u \cdot v = w} \min(\mu_1(u), \mu_2(v)).$$

• In terms of α -cuts, we have $\mathbf{w}(\alpha) = \mathbf{u}(\alpha) \cdot \mathbf{v}(\alpha)$, i.e., $w^{-}(\alpha) = u^{-}(\alpha) \cdot v^{-}(\alpha)$ and $w^{+}(\alpha) = u^{+}(\alpha) \cdot v^{+}(\alpha)$.

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 27 of 99 Go Back Full Screen Close

- We want to assign, to every fuzzy number s, a real number P(s), so that:
 - if a fuzzy number s is located between \underline{u} and \overline{u} , then $\underline{u} \leq P(s) \leq \overline{u}$ (conservativeness);
 - P(u+v) = P(u) + P(v) (additivity);
 - if for all α , $s^{-}(\alpha) \leq t^{-}(\alpha)$ and $s^{+}(\alpha) \leq t^{+}(\alpha)$, then we have $P(s) \leq P(t)$ (monotonicity);
 - if μ_n uniformly converges to μ , then $P(\mu_n) \to P(\mu)$ (continuity).
- Theorem. The fair price is equal to

$$P(s) = s_0 + \int_0^1 k^-(\alpha) \, ds^-(\alpha) - \int_0^1 k^+(\alpha) \, ds^+(\alpha) \text{ for some } k^{\pm}(\alpha).$$

Need for Decision...

When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval...

Monetary Approach Is...

The Notion of Utility

Group Decision...

We Must Take...

Home Page

Title Page

Page 28 of 99

Go Back

Full Screen

Close

• $\int f(x) \cdot dg(x) = \int f(x) \cdot g'(x) dx$ for a generalized function g'(x), hence for generalized $K^{\pm}(\alpha)$, we have:

$$P(s) = \int_0^1 K^-(\alpha) \cdot s^-(\alpha) d\alpha + \int_0^1 K^+(\alpha) \cdot s^+(\alpha) d\alpha.$$

• Conservativeness means that

$$\int_0^1 K^-(\alpha) \, d\alpha + \int_0^1 K^+(\alpha) \, d\alpha = 1.$$

• For the interval $[\underline{u}, \overline{u}]$, we get

$$P(s) = \left(\int_0^1 K^-(\alpha) \, d\alpha\right) \cdot \underline{u} + \left(\int_0^1 K^+(\alpha) \, d\alpha\right) \cdot \overline{u}.$$

- Thus, Hurwicz optimism-pessimism coefficient α_H is equal to $\int_0^1 K^+(\alpha) d\alpha$.
- In this sense, the above formula is a generalization of Hurwicz's formula to the fuzzy case.

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 29 of 99 Go Back Full Screen

Close

Part III
Utility-Based Approach

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 30 of 99 Go Back Full Screen Close Quit

Monetary Approach Is Not Always Appropriate

- In some situations, the result of the decision is the decision maker's own satisfaction.
- Examples:
 - buying a house to live in,
 - selecting a movie to watch.
- In such situations, monetary approach is not appropriate.
- For example:
 - a small apartment in downtown can be very expensive,
 - but many people prefer a cheaper but more spacious and comfortable – suburban house.

When Monetary . . .

Need for Decision . . .

Hurwicz Optimism-...

Fair Price Approach: . . .

Case of Interval . . . Monetary Approach Is.

The Notion of Utility Group Decision . . .

We Must Take . . . Home Page

Title Page

>>

Page 31 of 99

Go Back

Full Screen

Close

28. Non-Monetary Decision Making: Traditional Approach

- To make a decision, we must:
 - find out the user's preference, and
 - help the user select an alternative which is the best
 - according to these preferences.
- Traditional approach is based on an assumption that for each two alternatives A' and A'', a user can tell:
 - whether the first alternative is better for him/her; we will denote this by A'' < A';
 - or the second alternative is better; we will denote this by A' < A'';
 - or the two given alternatives are of equal value to the user; we will denote this by A' = A''.

29. The Notion of Utility

- Under the above assumption, we can form a natural numerical scale for describing preferences.
- Let us select a very bad alternative A_0 and a very good alternative A_1 .
- Then, most other alternatives are better than A_0 but worse than A_1 .
- For every prob. $p \in [0, 1]$, we can form a lottery L(p) in which we get A_1 w/prob. p and A_0 w/prob. 1 p.
- When p = 0, this lottery simply coincides with the alternative A_0 : $L(0) = A_0$.
- The larger the probability p of the positive outcome increases, the better the result:

$$p' < p''$$
 implies $L(p') < L(p'')$.

30. The Notion of Utility (cont-d)

- Finally, for p = 1, the lottery coincides with the alternative A_1 : $L(1) = A_1$.
- Thus, we have a continuous scale of alternatives L(p) that monotonically goes from $L(0) = A_0$ to $L(1) = A_1$.
- Due to monotonicity, when p increases, we first have L(p) < A, then we have L(p) > A.
- The threshold value is called the *utility* of the alternative A:

$$u(A) \stackrel{\text{def}}{=} \sup\{p : L(p) < A\} = \inf\{p : L(p) > A\}.$$

• Then, for every $\varepsilon > 0$, we have

$$L(u(A) - \varepsilon) < A < L(u(A) + \varepsilon).$$

• We will describe such (almost) equivalence by \equiv , i.e., we will write that $A \equiv L(u(A))$.

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 34 of 99

Go Back

Full Screen

Close

31. Fast Iterative Process for Determining u(A)

- Initially: we know the values $\underline{u} = 0$ and $\overline{u} = 1$ such that $A \equiv L(u(A))$ for some $u(A) \in [\underline{u}, \overline{u}]$.
- What we do: we compute the midpoint u_{mid} of the interval $[\underline{u}, \overline{u}]$ and compare A with $L(u_{\text{mid}})$.
- Possibilities: $A \leq L(u_{\text{mid}})$ and $L(u_{\text{mid}}) \leq A$.
- Case 1: if $A \leq L(u_{\text{mid}})$, then $u(A) \leq u_{\text{mid}}$, so

$$u \in [\underline{u}, u_{\text{mid}}].$$

• Case 2: if $L(u_{\text{mid}}) \leq A$, then $u_{\text{mid}} \leq u(A)$, so

$$u \in [u_{\mathrm{mid}}, \overline{u}].$$

- After each iteration, we decrease the width of the interval $[\underline{u}, \overline{u}]$ by half.
- After k iterations, we get an interval of width 2^{-k} which contains u(A) i.e., we get u(A) w/accuracy 2^{-k} .

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 35 of 99

Go Back

Full Screen

Close

- Suppose that we have found the utilities u(A'), u(A''), ..., of the alternatives A', A'', ...
- Which of these alternatives should we choose?
- By definition of utility, we have:
 - $A \equiv L(u(A))$ for every alternative A, and
 - L(p') < L(p'') if and only if p' < p''.
- We can thus conclude that A' is preferable to A'' if and only if u(A') > u(A'').
- In other words, we should always select an alternative with the largest possible value of utility.
- Interval techniques can help in finding the optimizing decision.

When Monetary...

Need for Decision . . .

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval . . .

Monetary Approach Is.

The Notion of Utility

Group Decision . . .

We Must Take...

Home Page

Title Page

44 >>

→

Page 36 of 99

Go Back

Full Screen

Close

33. How to Estimate Utility of an Action

- For each action, we usually know possible outcomes S_1, \ldots, S_n .
- We can often estimate the prob. p_1, \ldots, p_n of these outcomes.
- By definition of utility, each situation S_i is equiv. to a lottery $L(u(S_i))$ in which we get:
 - A_1 with probability $u(S_i)$ and
 - A_0 with the remaining probability $1 u(S_i)$.
- Thus, the action is equivalent to a complex lottery in which:
 - first, we select one of the situations S_i with probability p_i : $P(S_i) = p_i$;
 - then, depending on S_i , we get A_1 with probability $P(A_1 | S_i) = u(S_i)$ and A_0 w/probability $1 u(S_i)$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 37 of 99 Go Back Full Screen Close Quit

34. How to Estimate Utility of an Action (cont-d)

- Reminder:
 - first, we select one of the situations S_i with probability p_i : $P(S_i) = p_i$;
 - then, depending on S_i , we get A_1 with probability $P(A_1 | S_i) = u(S_i)$ and A_0 w/probability $1 u(S_i)$.
- The prob. of getting A_1 in this complex lottery is:

$$P(A_1) = \sum_{i=1}^{n} P(A_1 \mid S_i) \cdot P(S_i) = \sum_{i=1}^{n} u(S_i) \cdot p_i.$$

- In the complex lottery, we get:
 - A_1 with prob. $u = \sum_{i=1}^n p_i \cdot u(S_i)$, and
 - A_0 w/prob. 1 u.
- So, we should select the action with the largest value of expected utility $u = \sum p_i \cdot u(S_i)$.

When Monetary...

Hurwicz Optimism-...

Need for Decision . . .

Fair Price Approach:...

Monetary Approach Is

Case of Interval . . .

The Notion of Utility

Group Decision . . .

We Must Take...

Home Page

Title Page

Page 38 of 99

Go Back

Full Screen

Close

35. Utility Is Different from Money

- Empirical data shows that utility u is proportional to square root of money x:
 - when x > 0, we have $u(x) = c_+ \cdot \sqrt{x}$;
 - when x < 0, we have $u(x) = -c_{-} \cdot \sqrt{|x|}$.
- This explains why most people are risk-averse.
- Indeed, let us consider two cases:
 - getting \$50, and
 - getting \$100 with probability 0.5.
- In both cases, the expected amount is the same, but:
 - in the first case, $u(x) = c_+ \cdot \sqrt{50} \approx 7 \cdot c_+$;
 - in the second case, the expected utility is

$$0.5 \cdot c_{+} \cdot \sqrt{100} + 0.5 \cdot c_{+} \cdot \sqrt{0} = 5 \cdot c_{+} \ll 7 \cdot c_{+}.$$

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 39 of 99 Go Back Full Screen Close Quit

36. Non-Uniqueness of Utility

- The above definition of utility u depends on A_0 , A_1 .
- What if we use different alternatives A'_0 and A'_1 ?
- Every A is equivalent to a lottery L(u(A)) in which we get A_1 w/prob. u(A) and A_0 w/prob. 1 u(A).
- For simplicity, let us assume that $A'_0 < A_0 < A_1 < A'_1$.
- Then, $A_0 \equiv L'(u'(A_0))$ and $A_1 \equiv L'(u'(A_1))$.
- So, A is equivalent to a complex lottery in which:
 - 1) we select A_1 w/prob. u(A) and A_0 w/prob. 1-u(A);
 - 2) depending on A_i , we get A'_1 w/prob. $u'(A_i)$ and A'_0 w/prob. $1 u'(A_i)$.
- In this complex lottery, we get A'_1 with probability $u'(A) = u(A) \cdot (u'(A_1) u'(A_0)) + u'(A_0)$.
- So, in general, utility is defined modulo an (increasing) linear transformation $u' = a \cdot u + b$, with a > 0.

When Monetary . . . Hurwicz Optimism- . . . Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 40 of 99 Go Back Full Screen Close Quit

37. Subjective Probabilities

- In practice, we often do not know the probabilities p_i of different outcomes.
- For each event E, a natural way to estimate its subjective probability is to fix a prize (e.g., \$1) and compare:
 - the lottery ℓ_E in which we get the fixed prize if the event E occurs and 0 is it does not occur, with
 - a lottery $\ell(p)$ in which we get the same amount with probability p.
- Here, similarly to the utility case, we get a value ps(E) for which, for every $\varepsilon > 0$:

$$\ell(ps(E) - \varepsilon) < \ell_E < \ell(ps(E) + \varepsilon).$$

• Then, the utility of an action with possible outcomes S_1, \ldots, S_n is equal to $u = \sum_{i=1}^n ps(E_i) \cdot u(S_i)$.

38. Beyond Traditional Decision Making: Towards a More Realistic Description

- Previously, we assumed that a user can always decide which of the two alternatives A' and A'' is better:
 - either A' < A'',
 - or A'' < A',
 - $\text{ or } A' \equiv A''.$
- In practice, a user is sometimes unable to meaningfully decide between the two alternatives; denoted $A' \parallel A''$.
- In mathematical terms, this means that the preference relation:
 - is no longer a *total* (linear) order,
 - it can be a *partial* order.

39. From Utility to Interval-Valued Utility

- Similarly to the traditional decision making approach:
 - we select two alternatives $A_0 < A_1$ and
 - we compare each alternative A which is better than A_0 and worse than A_1 with lotteries L(p).
- Since preference is a *partial* order, in general:

$$\underline{u}(A) \stackrel{\text{def}}{=} \sup\{p : L(p) < A\} < \overline{u}(A) \stackrel{\text{def}}{=} \inf\{p : L(p) > A\}.$$

- For each alternative A, instead of a single value u(A) of the utility, we now have an $interval [\underline{u}(A), \overline{u}(A)]$ s.t.:
 - if $p < \underline{u}(A)$, then L(p) < A;
 - if $p > \overline{u}(A)$, then A < L(p); and
 - if $\underline{u}(A) , then <math>A \parallel L(p)$.
- We will call this interval the utility of the alternative A.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 43 of 99 Go Back Full Screen Close Quit

40. Interval-Valued Utilities and Interval-Valued Subjective Probabilities

- To feasibly elicit the values $\underline{u}(A)$ and $\overline{u}(A)$, we:
 - 1) starting $w/[\underline{u}, \overline{u}] = [0, 1]$, bisect an interval s.t. $L(\underline{u}) < A < L(\overline{u})$ until we find u_0 s.t. $A \parallel L(u_0)$;
 - 2) by bisecting an interval $[\underline{u}, u_0]$ for which $L(\underline{u}) < A \parallel L(u_0)$, we find $\underline{u}(A)$;
 - 3) by bisecting an interval $[u_0, \overline{u}]$ for which $L(u_0) \parallel A < L(\overline{u})$, we find $\overline{u}(A)$.
- \bullet Similarly, when we estimate the probability of an event E:
 - we no longer get a single value ps(E);
 - we get an *interval* $[\underline{ps}(E), \overline{ps}(E)]$ of possible values of probability.
- By using bisection, we can feasibly elicit the values ps(E) and $\overline{ps}(E)$.

Need for Decision . . . When Monetary . . . Hurwicz Optimism- . . . Fair Price Approach: . . . Case of Interval... Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 44 of 99 Go Back Full Screen Close

41. Decision Making Under Interval Uncertainty

- Situation: for each possible decision d, we know the interval $[\underline{u}(d), \overline{u}(d)]$ of possible values of utility.
- Questions: which decision shall we select?
- Natural idea: select all decisions d_0 that may be optimal, i.e., which are optimal for some function

$$u(d) \in [\underline{u}(d), \overline{u}(d)].$$

- *Problem:* checking all possible functions is not feasible.
- Solution: the above condition is equivalent to an easier-to-check one:

$$\overline{u}(d_0) \ge \max_d \underline{u}(d).$$

- Interval computations can help in describing the range of all such d_0 .
- Remaining problem: in practice, we would like to select one decision; which one should be select?

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 45 of 99 Go Back Full Screen Close Quit

42. Need for Definite Decision Making

- At first glance: if $A' \parallel A''$, it does not matter whether we recommend alternative A' or alternative A''.
- \bullet Let us show that this is not a good recommendation.
- E.g., let A be an alternative about which we know nothing, i.e., $[\underline{u}(A), \overline{u}(A)] = [0, 1]$.
- In this case, A is indistinguishable both from a "good" lottery L(0.999) and a "bad" lottery L(0.001).
- Suppose that we recommend, to the user, that A is equivalent both to L(0.999) and to L(0.001).
- Then this user will feel comfortable:
 - first, exchanging L(0.999) with A, and
 - then, exchanging A with L(0.001).
- So, following our recommendations, the user switches from a very good alternative to a very bad one.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 46 of 99 Go Back Full Screen Close Quit

43. Need for Definite Decision Making (cont-d)

- The above argument does not depend on the fact that we assumed complete ignorance about A:
 - every time we recommend that the alternative A is "equivalent" both to L(p) and to L(p') (p < p'),
 - we make the user vulnerable to a similar switch from a better alternative L(p') to a worse one L(p).
- Thus, there should be only a single value p for which A can be reasonably exchanged with L(p).
- In precise terms:
 - we start with the utility interval $[\underline{u}(A), \overline{u}(A)]$, and
 - we need to select a single u(A) for which it is reasonable to exchange A with a lottery L(u).
- How can we find this value u(A)?

44. Decisions under Interval Uncertainty: Hurwicz Optimism-Pessimism Criterion

- Reminder: we need to assign, to each interval $[\underline{u}, \overline{u}]$, a utility value $u(\underline{u}, \overline{u}) \in [\underline{u}, \overline{u}]$.
- *History:* this problem was first handled in 1951, by the future Nobelist Leonid Hurwicz.
- Notation: let us denote $\alpha_H \stackrel{\text{def}}{=} u(0,1)$.
- Reminder: utility is determined modulo a linear transformation $u' = a \cdot u + b$.
- Reasonable to require: the equivalent utility does not change with re-scaling: for a > 0 and b,

$$u(a \cdot u^{-} + b, a \cdot u^{+} + b) = a \cdot u(u^{-}, u^{+}) + b.$$

• For $u^- = 0$, $u^+ = 1$, $a = \overline{u} - \underline{u}$, and $b = \underline{u}$, we get $u(\underline{u}, \overline{u}) = \alpha_H \cdot (\overline{u} - \underline{u}) + \underline{u} = \alpha_H \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{u}.$

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 48 of 99 Go Back Full Screen Close Quit

45. Hurwicz Optimism-Pessimism Criterion (cont)

- The expression $\alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u}$ is called *optimism*-pessimism criterion, because:
 - when $\alpha_H = 1$, we make a decision based on the most optimistic possible values $u = \overline{u}$;
 - when $\alpha_H = 0$, we make a decision based on the most pessimistic possible values u = u;
 - for intermediate values $\alpha_H \in (0, 1)$, we take a weighted average of the optimistic and pessimistic values.
- According to this criterion:
 - if we have several alternatives A', \ldots , with intervalvalued utilities $[\underline{u}(A'), \overline{u}(A')], \ldots$,
 - we recommend an alternative A that maximizes

$$\alpha_H \cdot \overline{u}(A) + (1 - \alpha_H) \cdot \underline{u}(A).$$

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 49 of 99 Go Back Full Screen Close Quit

46. Which Value α_H Should We Choose? An Argument in Favor of $\alpha_H = 0.5$

- \bullet Let us take an event E about which we know nothing.
- For a lottery L^+ in which we get A_1 if E and A_0 otherwise, the utility interval is [0, 1].
- Thus, the equiv. utility of L^+ is $\alpha_H \cdot 1 + (1 \alpha_H) \cdot 0 = \alpha_H$.
- For a lottery L^- in which we get A_0 if E and A_1 otherwise, the utility is [0,1], so equiv. utility is also α_H .
- For a complex lottery L in which we select either L^+ or L^- with probability 0.5, the equiv. utility is still α_H .
- On the other hand, in L, we get A_1 with probability 0.5 and A_0 with probability 0.5.
- Thus, L = L(0.5) and hence, u(L) = 0.5.
- So, we conclude that $\alpha_H = 0.5$.

When Monetary...

Hurwicz Optimism-...

Need for Decision . . .

Fair Price Approach:...

Case of Interval...

Monetary Approach Is.

The Notion of Utility

Group Decision . . .
We Must Take . . .

Home Page

Title Page

Page 50 of 99

Go Back

Full Screen

Close

47. Which Action Should We Choose?

- Suppose that an action has n possible outcomes S_1, \ldots, S_n , with utilities $[\underline{u}(S_i), \overline{u}(S_i)]$, and probabilities $[\underline{p}_i, \overline{p}_i]$.
- We know that each alternative is equivalent to a simple lottery with utility $u_i = \alpha_H \cdot \overline{u}(S_i) + (1 \alpha_H) \cdot \underline{u}(S_i)$.
- We know that for each i, the i-th event is equivalent to $p_i = \alpha_H \cdot \overline{p}_i + (1 \alpha_H) \cdot \underline{p}_i$.
- Thus, this action is equivalent to a situation in which we get utility u_i with probability p_i .
- The utility of such a situation is equal to $\sum_{i=1}^{n} p_i \cdot u_i$.
- Thus, the equivalent utility of the original action is equivalent to

$$\sum_{i=1}^{n} \left(\alpha_{H} \cdot \overline{p}_{i} + (1 - \alpha_{H}) \cdot \underline{p}_{i} \right) \cdot \left(\alpha_{H} \cdot \overline{u}(S_{i}) + (1 - \alpha_{H}) \cdot \underline{u}(S_{i}) \right).$$

Need for Decision...

When Monetary...

, , , , , , ,

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval . . .

Monetary Approach Is..

The Notion of Utility

Group Decision . . .

We Must Take...

Home Page
Title Page

Page 51 of 99

Go Back

Full Screen

Clos

Close

48. Observation: the Resulting Decision Depends on the Level of Detail

- Let us consider a situation in which, with some prob. p, we gain a utility u, else we get 0.
- The expected utility is $p \cdot u + (1 p) \cdot 0 = p \cdot u$.
- Suppose that we only know the intervals $[\underline{u}, \overline{u}]$ and $[\underline{p}, \overline{p}]$.
- The equivalent utility u_k (k for know) is $u_k = (\alpha_H \cdot \overline{p} + (1 \alpha_H) \cdot p) \cdot (\alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u}).$
- If we only know that utility is from $[\underline{p} \cdot \underline{u}, \overline{p} \cdot \overline{u}]$, then: $u_d = \alpha_H \cdot \overline{p} \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{p} \cdot \underline{u} \ (d \text{ for } d \text{on't know}).$
- Here, additional knowledge decreases utility: $u_d u_k = \alpha_H \cdot (1 \alpha_H) \cdot (\overline{p} p) \cdot (\overline{u} \underline{u}) > 0.$
- (This is maybe what the Book of Ecclesiastes meant by "For with much wisdom comes much sorrow"?)

Need for Decision...

When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval . . .

Monetary Approach Is.

The Notion of Utility

Group Decision . . .

We Must Take...

Home Page
Title Page

Page 52 of 99

Go Back

Full Screen

Close

49. Beyond Interval Uncertainty: Partial Info about Probabilities

- Frequent situation:
 - in addition to \mathbf{x}_i ,
 - we may also have partial information about the probabilities of different values $x_i \in \mathbf{x}_i$.
- An *exact* probability distribution can be described, e.g., by its cumulative distribution function

$$F_i(z) = \operatorname{Prob}(x_i \le z).$$

- A partial information means that instead of a single cdf, we have a class \mathcal{F} of possible cdfs.
- p-box (Scott Ferson):
 - for every z, we know an interval $\mathbf{F}(z) = [\underline{F}(z), \overline{F}(z)];$
 - we consider all possible distributions for which, for all z, we have $F(z) \in \mathbf{F}(z)$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take... Home Page Title Page **>>** Page 53 of 99 Go Back Full Screen Close Quit

- *Problem:* there are many ways to represent a probability distribution.
- *Idea:* look for an objective.
- Objective: make decisions $E_x[u(x,a)] \to \max_a$.
- Case 1: smooth u(x).
- Analysis: we have $u(x) = u(x_0) + (x x_0) \cdot u'(x_0) + \dots$
- Conclusion: we must know moments to estimate E[u].
- Case of uncertainty: interval bounds on moments.
- Case 2: threshold-type u(x) (e.g., regulations).
- Conclusion: we need cdf $F(x) = \text{Prob}(\xi \leq x)$.
- Case of uncertainty: p-box $[\underline{F}(x), \overline{F}(x)]$.

Need for Decision...
When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval...

Monetary Approach Is.

The Notion of Utility

Group Decision . . .

We Must Take...

Home Page

Title Page

Page 54 of 99

Go Back

Full Screen

Close

Part IV Group Decision Making

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take... Home Page Title Page 44 **>>** Page 55 of 99 Go Back Full Screen Close Quit

51. Multi-Agent Cooperative Decision Making

- How to describe preferences: for each participant P_i , we can determine the utility $u_{ij} \stackrel{\text{def}}{=} u_i(A_j)$ of all A_j .
- Question: how to transform these utilities into a reasonable group decision rule?
- Solution: was provided by another future Nobelist John Nash.
- Nash's assumptions:
 - symmetry,
 - independence from irrelevant alternatives, and
 - scale invariance under replacing function $u_i(A)$ with an equivalent function $a \cdot u_i(A)$,

52. Nash's Bargaining Solution (cont-d)

- Nash's assumptions (reminder):
 - symmetry,
 - independence from irrelevant alternatives, and
 - scale invariance.
- Nash's result:
 - the only group decision rule satisfying all these assumptions
 - is selecting an alternative A for which the product $\prod_{i=1}^{n} u_i(A)$ is the largest possible.
- Comment. the utility functions must be "scaled" s.t. the "status quo" situation $A^{(0)}$ has utility 0:

$$u_i(A) \to u'_i(A) \stackrel{\text{def}}{=} u_i(A) - u_i(A^{(0)}).$$

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 57 of 99 Go Back Full Screen Close Quit

• Reminder: if we set utility of status quo to 0, then we select an alternative A that maximizes

$$u(A) = \prod_{i=1}^{n} u_i(A).$$

- Case of interval uncertainty: we only know intervals $[\underline{u}_i(A), \overline{u}_i(A)].$
- First idea: find all A_0 for which $\overline{u}(A_0) \ge \max_A \underline{u}(A)$, where

$$[\underline{u}(A), \overline{u}(A)] \stackrel{\text{def}}{=} \prod_{i=1}^{n} [\underline{u}_i(A), \overline{u}_i(A)].$$

- Second idea: maximize $u^{\text{equiv}}(A) \stackrel{\text{def}}{=} \prod_{i=1}^{n} u_i^{\text{equiv}}(A)$.
- Interesting aspect: when we have a conflict situation (e.g., in security games).

When Monetary...

Need for Decision . . .

Hurwicz Optimism-...
Fair Price Approach:...

Case of Interval . . .

Monetary Approach Is.

The Notion of Utility

Group Decision . . .

We Must Take...

Home Page

Title Page

Page 58 of 99

Go Back

Full Screen

Tun Screen

Close

54. Group Decision Making and Arrow's Impossibility Theorem

- In 1951, Kenneth J. Arrow published his famous result about group decision making.
- This result that became one of the main reasons for his 1972 Nobel Prize.
- The problem:
 - A group of n participants P_1, \ldots, P_n needs to select between one of m alternatives A_1, \ldots, A_m .
 - To find individual preferences, we ask each participant P_i to rank the alternatives A_i :

$$A_{j_1} \succ_i A_{j_2} \succ_i \ldots \succ_i A_{j_n}.$$

- Based on these n rankings, we must form a single group ranking (equivalence \sim is allowed).

55. Case of Two Alternatives Is Easy

- Simplest case:
 - we have only two alternatives A_1 and A_2 ,
 - each participant either prefers A_1 or prefers A_2 .
- Solution: it is reasonable, for a group:
 - to prefer A_1 if the majority prefers A_1 ,
 - to prefer A_2 if the majority prefers A_2 , and
 - to claim A_1 and A_2 to be of equal quality for the group (denoted $A_1 \sim A_2$) if there is a tie.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 60 of 99 Go Back Full Screen Close Quit

56. Case of Three or More Alternatives Is Not Easy

- Arrow's result: no group decision rule can satisfy the following natural conditions.
- Pareto condition: if all participants prefer A_j to A_k , then the group should also prefer A_j to A_k .
- Independence from Irrelevant Alternatives: the group ranking of A_i vs. A_k should not depend on other A_i s.
- Arrow's theorem: every group decision rule which satisfies these two condition is a dictatorship rule:
 - the group accepts the preferences of one of the participants as the group decision and
 - ignores the preferences of all other participants.
- This violates *symmetry*: that the group decision rules should not depend on the order of the participants.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 61 of 99 Go Back Full Screen Close Quit

57. Beyond Arrow's Impossibility Theorem

- *Usual claim:* Arrow's Impossibility Theorem proves that reasonable group decision making is impossible.
- Our claim: Arrow's result is only valid if we have binary ("yes"-"no") individual preferences.
- Fact: this information does not fully describe a persons' preferences.
- Example: the preference $A_1 \succ A_2 \succ A_3$:
 - it may indicate that a person strongly prefers A_1 to A_2 , and strongly prefers A_2 to A_3 , and
 - it may also indicate that this person strongly prefers A_1 to A_2 , and at the same time, $A_2 \approx A_3$.
- How can this distinction be described: researchers in decision making use the notion of utility.

- Situation: for each participant P_i (i = 1, ..., n), we know his/her utility $u_i(A_j)$ of A_j , j = 1, ..., m.
- Possible choices: lotteries $p = (p_1, ..., p_m)$ in which we select A_j with probability $p_j \ge 0$, $\sum_{i=1}^m p_j = 1$.
- Nash's solution: among all the lotteries p, we select the one that maximizes

$$\prod_{i=1}^{n} u_{i}(p), \text{ where } u_{i}(p) = \sum_{j=1}^{m} p_{j} \cdot u_{i}(A_{j}).$$

- Generic case: no two vectors $u_i = (u_i(A_1), \dots, u_i(A_m))$ are collinear.
- In this general case: Nash's solution is unique.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 63 of 99 Go Back Full Screen Close Quit

59. Sometimes It Is Beneficial to Cheat: An Example

- Situation: participant P_1 know the utilities of all the other participants, but they don't know his $u_1(B)$.
- Notation: let A_{m_1} be P_1 's best alternative:

$$u_1(A_{m_1}) \ge u_1(A_j)$$
 for all $j \ne m_1$.

- How to cheat: P_1 can force the group to select A_{m_1} by using a "fake" utility function $u'_1(A)$ for which
 - $u_1'(A_{m_1}) = 1$ and
 - $u'_1(A_j) = 0$ for all $j \neq m_1$.
- Why it works:
 - when selecting A_j w/ $j \neq m_1$, we get $\prod u_i(A_j) = 0$;
 - when selecting A_{m_1} , we get $\prod u_i(A_j) > 0$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 64 of 99 Go Back Full Screen Close Quit

60. Cheating May Hurt the Cheater: an Observation

- A more typical situation: no one knows others' utility functions.
- Let P_1 use the above false utility function $u'_1(A)$ for which $u'_1(A_{m_1}) = 1$ and $u'_1(A_j) = 0$ for all $j \neq m_1$.
- Possibility: others use similar utilities with $u_i(A_{m_i}) > 0$ for some $m_i \neq m_1$ and $u_i(A_j) = 0$ for $j \neq m_i$.
- Then for every alternative A_j , Nash's product is equal to 0.
- From this viewpoint, all alternatives are equally good, so each of them can be chosen.
- In particular, it may be possible that the group selects an alternative A_q which is the worst for P_1 i.e., s.t.

$$u_1(A_q) < u_1(A_j)$$
 for all $j \neq p$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 65 of 99 Go Back Full Screen Close Quit

61. Case Study: Territorial Division

- Dividing a set (territory) A between n participants, i.e., finding X_i s.t. $\bigcup_{i=1}^n X_i$ and $X_i \cap X_j = \emptyset$ for $i \neq j$.
- The utility functions have the form $u_i(X) = \int_X v_i(t) dt$.
- Nash's solution: maximize $u_1(X) \cdot \ldots \cdot u_n(X_n)$.
- Assumption: P_1 does not know $u_i(B)$ for $i \neq 1$.
- Choices: the participant P_1 can report a fake utility function $v'_1(t) \neq v_1(t)$.
- For each $v'_1(t)$, we maximizes the product

$$\left(\int_{X_1} v_1'(t) dt\right) \cdot \left(\int_{X_2} v_2(t) dt\right) \cdot \ldots \cdot \left(\int_{X_n} v_n(t) dt\right).$$

• Question: select $v'_1(t)$ that maximizes the gain

$$u(v'_1, v_1, v_2, \dots, v_n) \stackrel{\text{def}}{=} \int_{X_1} v'_1(t) dt.$$

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 66 of 99 Go Back Full Screen Close Quit

62. For Territorial Division, It Is Beneficial to Report the Correct Utilities: Result

- Hurwicz's criterion $u(A) = \alpha \cdot u^{-}(A) + (1 \alpha) \cdot u^{+}(A)$ may sound arbitrary.
- For our problem: Hurwicz's criterion means that we select a utility function $v'_1(t)$ that maximizes

$$J(v_1') \stackrel{\text{def}}{=} \alpha \cdot \min_{v_2, \dots, v_n} u(v_1', v_1, v_2, \dots, v_n) + (1 - \alpha) \cdot \max_{v_2, \dots, v_n} u(v_1', v_1, v_2, \dots, v_n).$$

- Theorem: when $\alpha > 0$, the objective function $J(v'_1)$ attains its largest possible value for $v'_1(t) = v_1(t)$.
- Conclusion: unless we select pure optimism, it is best to select $v'_1(t) = v_1(t)$, i.e., to tell the truth.

63. How to Find Individual Preferences from Collective Decision Making: Inverse Problem of Game Theory

- Situation: we have a group of n participants P_1, \ldots, P_n that does not want to reveal its individual preferences.
- Example: political groups tend to hide internal disagreements.
- Objective: detect individual preferences.
- Example: this is want kremlinologies used to do.
- Assumption: the group uses Nash's solution to make decisions.
- We can: ask the group as a whole to compare different alternatives.

64. Comment

- Fact: Nash's solution depends only on the product of the utility functions.
- Corollary: in the best case,
 - we will be able to determine n individual utility functions
 - without knowing which of these functions corresponds to which individual.
- Comment: this is OK, because
 - our main objective is to predict future behavior of this group,
 - and in this prediction, it is irrelevant who has which utility function.

65. How to Find Individual Preferences from Collective Decision Making: Our Result

- Let $u_{ij} = u_i(A_j)$ denote *i*-th utility of *j*-th alternative.
- We assume that utility is normalized: $u_i(A_0) = 0$ for status quo A_0 and $u_i(A_1) = 1$ for some A_1 .
- According to Nash: $p = (p_1, \ldots, p_n) \leq q = (q_1, \ldots, q_n) \Leftrightarrow$

$$\prod_{i=1}^{n} \left(\sum_{j=1}^{n} p_j \cdot u_{ij} \right) \le \prod_{i=1}^{n} \left(\sum_{j=1}^{n} q_j \cdot u_{ij} \right).$$

- Theorem: if utilities u_{ij} and u'_{ij} lead to the same preference \leq , then they differ only by permutation.
- Conclusion: we can determine individual preferences from group decisions.
- An efficient algorithm for determining u_{ij} from \leq is possible.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 70 of 99 Go Back Full Screen Close Quit

66. We Must Take Altruism and Love into Account

- Implicit assumption: the utility $u_i(A_j)$ of a participant P_i depends only on what he/she gains.
- In real life: the degree of a person's happiness also depends on the degree of happiness of other people:
 - Normally, this dependence is positive, i.e., we feel happier if other people are happy.
 - However, negative emotions such as jealousy are also common.
- This idea was developed by another future Nobelist Gary Becker: $u_i = u_i^{(0)} + \sum_{j \neq i} \alpha_{ij} \cdot u_j$, where:
 - $u_i^{(0)}$ is the utility of person *i* that does not take interdependence into account; and
 - u_j are utilities of other people $j \neq i$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 71 of 99 Go Back Full Screen Close Quit

67. Paradox of Love

- Case n = 2: $u_1 = u_1^{(0)} + \alpha_{12} \cdot u_2$; $u_2 = u_2^{(0)} + \alpha_{21} \cdot u_1$.
- Solution: $u_1 = \frac{u_1^{(0)} + \alpha_{12} \cdot u_2^{(0)}}{1 \alpha_{12} \cdot \alpha_{21}}; u_2 = \frac{u_2^{(0)} + \alpha_{21} \cdot u_1^{(0)}}{1 \alpha_{12} \cdot \alpha_{21}}.$
- Example: mutual affection means that $\alpha_{12} > 0$ and $\alpha_{21} > 0$.
- Example: selfless love, when someone else's happiness means more than one's own, corresponds to $\alpha_{12} > 1$.
- Paradox:
 - when two people are deeply in love with each other $(\alpha_{12} > 1 \text{ and } \alpha_{21} > 1)$, then
 - positive original pleasures $u_i^{(0)} > 0$ lead to $u_i < 0$ i.e., to unhappiness.

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 72 of 99 Go Back Full Screen Close Quit

68. Paradox of Love: Discussion

- Paradox reminder:
 - when two people are deeply in love with each other, then
 - positive original pleasures $u_i^{(0)} > 0$ lead to unhappiness.
- This may explain why people in love often experience deep negative emotions.
- From this viewpoint, a situation when
 - one person loves deeply and
 - another rather allows him- or herself to be loved

may lead to more happiness than mutual passionate love.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 73 of 99 Go Back Full Screen Close

Quit

69. Why Two and not Three?

• An *ideal love* is when each person treats other's emotions almost the same way as one's own, i.e.,

$$\alpha_{12} = \alpha_{21} = \alpha = 1 - \varepsilon$$
 for a small $\varepsilon > 0$.

- For two people, from $u_i^{(0)} > 0$, we get $u_i > 0$ i.e., we can still have happiness.
- For $n \ge 3$, even for $u_i^{(0)} = u^{(0)} > 0$, we get $u_i = \frac{u^{(0)}}{1 (1 \varepsilon) \cdot (n 1)} < 0$, i.e., unhappiness.
- Corollary: if two people care about the same person (e.g., his mother and his wife),
 - all three of them are happier
 - if there is some negative feeling (e.g., jealousy) between them.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 74 of 99 Go Back Full Screen Close Quit

70. Emotional vs. Objective Interdependence

• We considered: emotional interdependence, when one's utility is determined by the utility of other people:

$$u_i = u_i^{(0)} + \sum_j \alpha_j \cdot u_j.$$

• Alternative: "objective" altruism, when one's utility depends on the material gain of other people:

$$u_i = u_i^{(0)} + \sum_j \alpha_j \cdot u_j^{(0)}.$$

- In this approach: we care about others' well-being, not about their emotions.
- In this approach: no paradoxes arise, any degree of altruism only improves the situation.
- The objective approach was proposed by yet another Nobel Prize winner Amartya K. Sen.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 75 of 99 Go Back Full Screen Close Quit

Case Study: Selecting a Location for a Meteorological Tower

Part V

Need for Decision . . . When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take... Home Page Title Page 44 **>>** Page 76 of 99 Go Back Full Screen Close Quit

71. Introduction

- Challenge: in many remote areas, meteorological sensor coverage is sparse.
- Desirable: design sensor networks that provide the largest amount of useful information within a given budget.
- Difficulty: because of the huge uncertainty, this problem is very difficult even to formulate in precise terms.
- First aspect of the problem: how to best distribute the sensors over the large area.
- Status: reasonable solutions exist for this aspect.
- Second aspect of the problem: what is the best location of each sensor in the corresponding zone.
- This talk: will focus on this aspect of the sensor placement problem.

72. Outline

- Case study: meteorological tower.
- This case is an example of multi-criteria optimization, when we need to maximize several objectives x_1, \ldots, x_n .
- Traditional approach to multi-objective optimization: maximize a weighted combination $\sum_{i=1}^{n} w_i \cdot x_i$.
- Specifics of our case: constraints $x_i > x_i^{(0)}$ or $x_i < x_i^{(0)}$.
- Equiv.: $y_i > 0$, where $y_i \stackrel{\text{def}}{=} x_i x_i^{(0)}$ or $y_i = x_i^{(0)} x_i$.
- Limitations of using the traditional approach under constraints.
- Scale invariance: a brief description.
- Main result: scale invariance leads to a new approach: maximize $\sum_{i=1}^{n} w_i \cdot \ln(y_i) = \sum_{i=1}^{n} w_i \cdot \ln \left| x_i x_i^{(0)} \right|$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 78 of 99 Go Back Full Screen Close Quit

73. Case Study

- Objective: select the best location of a sophisticated multi-sensor meteorological tower.
- Constraints: we have several criteria to satisfy.
- Example: the station should not be located too close to a road.
- *Motivation:* the gas flux generated by the cars do not influence our measurements of atmospheric fluxes.
- Formalization: the distance x_1 to the road should be larger than a threshold t_1 : $x_1 > t_1$, or $y_1 \stackrel{\text{def}}{=} x_1 t_1 > 0$.
- Example: the inclination x_2 at the tower's location should be smaller than a threshold t_2 : $x_2 < t_2$.
- *Motivation:* otherwise, the flux determined by this inclination and not by atmospheric processes.

74. General Case

- In general: we have several differences y_1, \ldots, y_n all of which have to be non-negative.
- For each of the differences y_i , the larger its value, the better.
- Our problem is a typical setting for multi-criteria optimization.
- A most widely used approach to multi-criteria optimization is weighted average, where
 - we assign weights $w_1, \ldots, w_n > 0$ to different criteria y_i and
 - select an alternative for which the weighted average

$$w_1 \cdot y_1 + \ldots + w_n \cdot y_n$$

attains the largest possible value.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 80 of 99 Go Back Full Screen Close Quit

75. Limitations of the Weighted Average Approach

- In general: the weighted average approach often leads to reasonable solutions of the multi-criteria problem.
- In our problem: we have an additional requirement that all the values y_i must be positive. So:
 - when selecting an alternative with the largest possible value of the weighted average,
 - we must only compare solutions with $y_i > 0$.
- We will show: under the requirement $y_i > 0$, the weighted average approach is not fully satisfactory.
- Conclusion: we need to find a more adequate solution.

76. Limitations of the Weighted Average Approach: Details

- The values y_i come from measurements, and measurements are never absolutely accurate.
- The results \widetilde{y}_i of the measurements are not exactly equal to the actual (unknown) values y_i .
- If: for some alternative $y = (y_1, \dots, y_n)$
 - we measure the values y_i with higher and higher accuracy and,
 - based on the measurement results \tilde{y}_i , we conclude that y is better than some other alternative y'.
- Then: we expect that the actual alternative y is indeed better than y' (or at least of the same quality).
- Otherwise, we will not be able to make any meaningful conclusions based on real-life measurements.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 82 of 99 Go Back Full Screen Close Quit

The Above Natural Requirement Is Not Always Satisfied for Weighted Average

- Simplest case: two criteria y_1 and y_2 , w/weights $w_i > 0$.
- If $y_1, y_2, y_1', y_2' > 0$, and $w_1 \cdot y_1 + w_2 \cdot y_2 > w_1 \cdot y_1' + w_2 \cdot y_2'$, then $y = (y_1, y_2) \succ y' = (y_1', y_2')$.
- If $y_1 > 0$, $y_2 > 0$, and at least one of the values y_1' and y_2' is non-positive, then $y = (y_1, y_2) \succ y' = (y_1', y_2')$.
- Let us consider, for every $\varepsilon > 0$, the tuple $y(\varepsilon) \stackrel{\text{def}}{=} (\varepsilon, 1 + w_1/w_2)$, and y' = (1, 1).
- In this case, for every $\varepsilon > 0$, we have $w_1 \cdot y_1(\varepsilon) + w_2 \cdot y_2(\varepsilon) = w_1 \cdot \varepsilon + w_2 + w_2 \cdot \frac{w_1}{w_2} = w_1 \cdot (1+\varepsilon) + w_2$
 - and $w_1 \cdot y_1' + w_2 \cdot y_2' = w_1 + w_2$, hence $y(\varepsilon) \succ y'$.
- However, in the limit $\varepsilon \to 0$, we have $y(0) = \left(0, 1 + \frac{w_1}{w_2}\right)$, with $y(0)_1 = 0$ and thus, $y(0) \prec y'$.

Need for Decision...

When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval . . .

Monetary Approach Is.

The Notion of Utility

Group Decision...

We Must Take...

Home Page
Title Page

| |4 | **|** | **|** |

Page 83 of 99

Go Back

Full Screen

Close

78. Towards a Precise Description

- Each alternative is characterized by a tuple of n positive values $y = (y_1, \ldots, y_n)$.
- Thus, the set of all alternatives is the set $(R^+)^n$ of all the tuples of positive numbers.
- For each two alternatives y and y', we want to tell whether
 - -y is better than y' (we will denote it by $y \succ y'$ or $y' \prec y$),
 - or y' is better than $y (y' \succ y)$,
 - or y and y' are equally good $(y' \sim y)$.
- Natural requirement: if y is better than y' and y' is better than y'', then y is better than y''.
- The relation \succ must be transitive.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 84 of 99 Go Back Full Screen Close Quit

79. Towards a Precise Description (cont-d)

- Reminder: the relation \succ must be transitive.
- Similarly, the relation \sim must be transitive, symmetric, and reflexive $(y \sim y)$, i.e., be an equivalence relation.
- An alternative description: a transitive pre-ordering relation $a \succeq b \Leftrightarrow (a \succ b \lor a \sim b)$ s.t. $a \succeq b \lor b \succeq a$.
- Then, $a \sim b \Leftrightarrow (a \succeq b) \& (b \succeq a)$, and

$$a \succ b \Leftrightarrow (a \succeq b) \& (b \not\succeq a).$$

- Additional requirement:
 - -if each criterion is better,
 - then the alternative is better as well.
- Formalization: if $y_i > y'_i$ for all i, then $y \succ y'$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 85 of 99 Go Back Full Screen Close Quit

80. Scale Invariance: Motivation

- Fact: quantities y_i describe completely different physical notions, measured in completely different units.
- Examples: wind velocities measured in m/s, km/h, mi/h; elevations in m, km, ft.
- Each of these quantities can be described in many different units.
- A priori, we do not know which units match each other.
- Units used for measuring different quantities may not be exactly matched.
- It is reasonable to require that:
 - if we simply change the units in which we measure each of the corresponding n quantities,
 - the relations \succ and \sim between the alternatives $y = (y_1, \ldots, y_n)$ and $y' = (y'_1, \ldots, y'_n)$ do not change.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take... Home Page Title Page **>>** Page 86 of 99 Go Back Full Screen Close Quit

81. Scale Invariance: Towards a Precise Description

- Situation: we replace:
 - a unit in which we measure a certain quantity q
 - by a new measuring unit which is $\lambda > 0$ times smaller.
- Result: the numerical values of this quantity increase by a factor of λ : $q \to \lambda \cdot q$.
- Example: 1 cm is $\lambda = 100$ times smaller than 1 m, so the length q = 2 becomes $\lambda \cdot q = 2 \cdot 100 = 200$ cm.
- Then, scale-invariance means that for all $y, y' \in (R^+)^n$ and for all $\lambda_i > 0$, we have
 - $y = (y_1, \dots, y_n) \succ y' = (y'_1, \dots, y'_n)$ implies $(\lambda_1 \cdot y_1, \dots, \lambda_n \cdot y_n) \succ (\lambda_1 \cdot y'_1, \dots, \lambda_n \cdot y'_n),$
 - $y = (y_1, \dots, y_n) \sim y' = (y'_1, \dots, y'_n)$ implies $(\lambda_1 \cdot y_1, \dots, \lambda_n \cdot y_n) \sim (\lambda_1 \cdot y'_1, \dots, \lambda_n \cdot y'_n)$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 87 of 99 Go Back Full Screen Close Quit

82. Formal Description

- \bullet By a total pre-ordering relation on a set Y, we mean
 - a pair of a transitive relation \succ and an equivalence relation \sim for which,
 - for every $y, y' \in Y$, exactly one of the following relations hold: $y \succ y', y' \succ y$, or $y \sim y'$.
- We say that a total pre-ordering is non-trivial if there exist y and y' for which $y \succ y'$.
- We say that a total pre-ordering relation on $(R^+)^n$ is:
 - monotonic if $y'_i > y_i$ for all i implies $y' \succ y$;
 - continuous if
 - * whenever we have a sequence $y^{(k)}$ of tuples for which $y^{(k)} \succeq y'$ for some tuple y', and
 - * the sequence $y^{(k)}$ tends to a limit y,
 - * then $y \succeq y'$.

When Monetary . . . Hurwicz Optimism-... Fair Price Approach: . . . Case of Interval . . . Monetary Approach Is. The Notion of Utility Group Decision . . . We Must Take . . . Home Page Title Page **>>** Page 88 of 99 Go Back Full Screen Close Quit

Theorem. Every non-trivial monotonic scale-inv. continuous total pre-ordering relation on $(R^+)^n$ has the form:

$$y' = (y'_1, \dots, y'_n) \succ y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} > \prod_{i=1}^n y_i^{\alpha_i};$$

$$y' = (y'_1, \dots, y'_n) \sim y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} = \prod_{i=1}^n y_i^{\alpha_i},$$

for some constants $\alpha_i > 0$.

Comment: Vice versa,

- for each set of values $\alpha_1 > 0, \ldots, \alpha_n > 0$,
- the above formulas define a monotonic scale-invariant continuous pre-ordering relation on $(R^+)^n$.

Need for Decision...

When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval . . .

Monetary Approach Is.

The Notion of Utility

Group Decision...

We Must Take...

Home Page

Title Page

Page 89 of 99

Go Back

Full Screen

Close

84. Practical Conclusion

- Situation:
 - we need to select an alternative;
 - each alternative is characterized by characteristics y_1, \ldots, y_n .
- Traditional approach:
 - we assign the weights w_i to different characteristics;
 - we select the alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot y_i.$
- New result: it is better to select an alternative with the largest value of $\prod_{i=1}^{n} y_i^{w_i}$.
- Equivalent reformulation: select an alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot \ln(y_i)$.

85. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721,
- The author is greatly thankful to the conference organizers for their support.

Part VI Proofs

 $([0, \overline{u} - \overline{m}], [0, 0]) + ([u - m, 0], [0, 0)].$

 $P([\underline{u},\overline{u}],[\underline{m},\overline{m}]) = P([\underline{m},\underline{m}],[\underline{m},\underline{m}]) + P([0,\overline{m}-\underline{m}],[0,\overline{m}-\underline{m}]) +$

 $P([0, \overline{u} - \overline{m}], [0, 0]) + P([\underline{u} - \underline{m}, 0], [0, 0)].$

• Due to conservativeness, P([m, m], [m, m]) = m.

• Similarly to the interval case, we can prove that:

• $P([0,r],[0,r]) = \alpha_u \cdot r \text{ for some } \alpha_u \in [0,1],$

• $P([0,r],[0,0]) = \alpha_U \cdot r$ for some $\alpha_U \in [0,1]$;

Fair Price Approach: . . .

Hurwicz Optimism- . . .

Need for Decision . . . When Monetary . . .

Monetary Approach Is.

The Notion of Utility Group Decision . . .

Case of Interval . . .

We Must Take . . .

Home Page Title Page

>>

Page 93 of 99

Go Back

Full Screen

Close Quit

• $P([r, 0], [0, 0]) = \alpha_L \cdot r$ for some $\alpha_L \in [0, 1]$.

• Thus,

 $P([u,\overline{u}],[m,\overline{m}]) = m + \alpha_u \cdot (\overline{m} - m) + \alpha_U \cdot (U - \overline{m}) + \alpha_L \cdot (u - m).$

• So, due to additivity:

- Define $\mu_{\gamma,u}(0) = 1$, $\mu_{\gamma,u}(x) = \gamma$ for $x \in (0, u]$, and $\mu_{\gamma,u}(x) = 0$ for all other x.
- $\mathbf{s}_{\gamma,u}(\alpha) = [0,0]$ for $\alpha > \gamma, \mathbf{s}_{\gamma,u}(\alpha) = [0,u]$ for $\alpha \leq \gamma$.
- Based on the α -cuts, one check that $s_{\gamma,u+v} = s_{\gamma,u} + s_{\gamma,v}$.
- Thus, due to additivity, $P(s_{\gamma,u+v}) = P(s_{\gamma,u}) + P(s_{\gamma,v})$.
- Due to monotonicity, $P(s_{\gamma,u}) \uparrow$ when $u \uparrow$.
- Thus, $P(s_{\gamma,u}) = k^+(\gamma) \cdot u$ for some value $k^+(\gamma)$.
- Let us now consider a fuzzy number s s.t. $\mu(x) = 0$ for x < 0, $\mu(0) = 1$, then $\mu(x)$ continuously $\downarrow 0$.
- For each sequence of values $\alpha_0 = 1 < \alpha_1 < \alpha_2 < \dots < \alpha_{n-1} < \alpha_n = 1$, we can form an approximation s_n :
 - $s_n^-(\alpha) = 0$ for all α ; and
 - when $\alpha \in [\alpha_i, \alpha_{i+1})$, then $s_n^+(\alpha) = s^+(\alpha_i)$.

Need for Decision...

When Monetary...

Hurwicz Optimism-...

Fair Price Approach: . . .

Case of Interval . . .

Monetary Approach Is.

The Notion of Utility

Group Decision...

We Must Take...

Home Page

Title Page

Page 94 of 99

Go Back

Full Screen

Close

Close

88. Fuzzy Case: Proof (cont-d)

- Here, $s_n = s_{\alpha_{n-1}, s^+(\alpha_{n-1})} + s_{\alpha_{n-2}, s^+(\alpha_{n-2}) s^+(\alpha_{n-1})} + \dots + s_{\alpha_1, \alpha_1 \alpha_2}$.
- Due to additivity, $P(s_n) = k^+(\alpha_{n-1}) \cdot s^+(\alpha_{n-1}) + k^+(\alpha_{n-2}) \cdot (s^+(\alpha_{n-2}) s^+(\alpha_{n-1})) + \ldots + k^+(\alpha_1) \cdot (\alpha_1 \alpha_2).$
- This is minus the integral sum for $\int_0^1 k^+(\gamma) ds^+(\gamma)$.
- Here, $s_n \to s$, so $P(s) = \lim P(s_n) = \int_0^1 k^+(\gamma) ds^+(\gamma)$.
- Similarly, for fuzzy numbers s with $\mu(x) = 0$ for x > 0, we have $P(s) = \int_0^1 k^-(\gamma) ds^-(\gamma)$ for some $k^-(\gamma)$.
- A general fuzzy number g, with α -cuts $[g^{-}(\alpha), g^{+}(\alpha)]$ and a point g_0 at which $\mu(g_0) = 1$, is the sum of g_0 ,
 - a fuzzy number with α -cuts $[0, g^+(\alpha) g_0]$, and
 - a fuzzy number with α -cuts $[g_0 g^-(\alpha), 0]$.
- Additivity completes the proof.

Need for Decision . . .

When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval . . .

Monetary Approach Is..

The Notion of Utility

Group Decision . . .

We Must Take...

Home Page

Title Page

>>

Page 95 of 99

Go Back

Full Screen

Close

- Due to scale-invariance, for every $y_1, \ldots, y_n, y'_1, \ldots,$ y'_n , we can take $\lambda_i = \frac{1}{y_i}$ and conclude that $(y_1',\ldots,y_n') \sim (y_1,\ldots,y_n) \Leftrightarrow \left(\frac{y_1'}{y_1},\ldots,\frac{y_n'}{y_n}\right) \sim (1,\ldots,1).$
- Thus, to describe the equivalence relation \sim , it is sufficient to describe $\{z = (z_1, ..., z_n) : z \sim (1, ..., 1)\}.$
- Similarly,

$$(y_1',\ldots,y_n') \succ (y_1,\ldots,y_n) \Leftrightarrow \left(\frac{y_1'}{y_1},\ldots,\frac{y_n'}{y_n}\right) \succ (1,\ldots,1).$$

- Thus, to describe the ordering relation \succ , it is sufficient to describe the set $\{z = (z_1, ..., z_n) : z \succ (1, ..., 1)\}.$
- Similarly, it is also sufficient to describe the set

$${z = (z_1, \ldots, z_n) : (1, \ldots, 1) \succ z}.$$

Need for Decision . . .

When Monetary . . .

Hurwicz Optimism-... Fair Price Approach: . . .

Case of Interval . . .

Monetary Approach Is The Notion of Utility

Group Decision . . .

We Must Take . . .

Home Page Title Page

>>

Page 96 of 99

Go Back

Full Screen

Close

Proof: Part 2

90.

- To simplify: take logarithms $Y_i = \ln(y_i)$, and sets
 - $S_{\sim} = \{Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \sim (1, \dots, 1)\},\$
 - $S_{\succ} = \{Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \succ (1, \dots, 1)\};$
 - $S_{\prec} = \{Z : (1, \dots, 1) \succ z = (\exp(Z_1), \dots, \exp(Z_n))\}.$ • Since the pre-ordering relation is total, for Z, either

 $Z \in S_{\sim}$ or $Z \in S_{\sim}$ or $Z \in S_{\sim}$.

- Lemma: S_{\sim} is closed under addition:

 - $Z \in S_{\sim}$ means $(\exp(Z_1), \ldots, \exp(Z_n)) \sim (1, \ldots, 1);$
 - due to scale-invariance, we have
 - $(\exp(Z_1+Z_1'),\ldots)=(\exp(Z_1)\cdot\exp(Z_1'),\ldots)\sim(\exp(Z_1'),\ldots);$
 - also, $Z' \in S_{\sim}$ means $(\exp(Z'_1), \ldots) \sim (1, \ldots, 1)$;
 - since \sim is transitive,
 - $(\exp(Z_1 + Z_1), \ldots) \sim (1, \ldots) \text{ so } Z + Z' \in S_{\sim}.$

Hurwicz Optimism- . . .

Fair Price Approach: . . .

Need for Decision . . . When Monetary . . .

Case of Interval . . .

Monetary Approach Is. The Notion of Utility

Group Decision . . .

We Must Take . . .

Home Page

44

Title Page

>>

Page 97 of 99

Go Back

Full Screen

Close

91. Proof: Part 3

- Reminder: the set S_{\sim} is closed under addition;
- Similarly, S_{\prec} and S_{\succ} are closed under addition.
- Conclusion: for every integer q > 0:
 - if $Z \in S_{\sim}$, then $q \cdot Z \in S_{\sim}$;
 - $\text{ if } Z \in S_{\succ}, \text{ then } q \cdot Z \in S_{\succ};$
 - if $Z \in S_{\prec}$, then $q \cdot Z \in S_{\prec}$.
- Thus, if $Z \in S_{\sim}$ and $q \in N$, then $(1/q) \cdot Z \in S_{\sim}$.
- We can also prove that S_{\sim} is closed under $Z \to -Z$:
 - $Z = (Z_1, ...) \in S_{\sim}$ means $(\exp(Z_1), ...) \sim (1, ...);$
 - by scale invariance, $(1, ...) \sim (\exp(-Z_1), ...)$, i.e., $-Z \in S_{\sim}$.
- Similarly, $Z \in S_{\succ} \Leftrightarrow -Z \in S_{\prec}$.
- So $Z \in S_{\sim} \Rightarrow (p/q) \cdot Z \in S_{\sim}$; in the limit, $x \cdot Z \in S_{\sim}$.

When Monetary...

Need for Decision . . .

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval...

Monetary Approach Is.

The Notion of Utility

Group Decision...

We Must Take...

/e Must Take...

Home Page

Title Page

Page 98 of 99

Go Back

_ ...

Full Screen

Close

92. Proof: Final Part

- Reminder: S_{\sim} is closed under addition and multiplication by a scalar, so it is a linear space.
- Fact: S_{\sim} cannot have full dimension n, since then all alternatives will be equivalent to each other.
- Fact: S_{\sim} cannot have dimension < n-1, since then:
 - we can select an arbitrary $Z \in S_{\prec}$;
 - connect it $w/-Z \in S_{\succ}$ by a path γ that avoids S_{\sim} ;
 - due to closeness, $\exists \gamma(t^*)$ in the limit of S_{\succ} and S_{\prec} ;
 - thus, $\gamma(t^*) \in S_{\sim}$ a contradiction.
- Every (n-1)-dim lin. space has the form $\sum_{i=1}^{n} \alpha_i \cdot Y_i = 0$.
- Thus, $Y \in S_{\succ} \Leftrightarrow \sum \alpha_i \cdot Y_i > 0$, and $y \succ y' \Leftrightarrow \sum \alpha_i \cdot \ln(y_i/y_i') > 0 \Leftrightarrow \prod y_i^{\alpha_i} > \prod y_i'^{\alpha_i}.$

Need for Decision...

When Monetary...

Hurwicz Optimism-...

Fair Price Approach:...

Case of Interval...

Monetary Approach Is...

The Notion of Utility

Group Decision...

We Must Take...

Home Page

Title Page

Page 99 of 99

Go Back

Full Screen

Close