How Knowledge Propagates? A Fractal Model Justified on the Example of the Out of Eden Walk

Octavio Lerma^{1,2}, Leobardo Valera²,
Deana Pennington², and Vladik Kreinovich^{1,2}

¹Computational Science Program

²Cyber-ShARE Center

University of Texas at El Paso, El Paso, TX 79968, USA lolerma@episd.org, leobardovalera@gmail.com, ddpennington@utep.edu, vladik@utep.edu

1. Outline

- Most quantitative models of knowledge propagation use a system of differential equations.
- In such models, after a certain period of time:
 - the number of new people getting a certain knowledge (or acquiring a certain skill)
 - decreases exponentially with time.
- Experiments show that sometime, a slower "fractal" power law describes knowledge propagation better.
- In this talk, we analyze which model is better.
- As an example, we use responses to Out of Eden Walk dispatches.
- In this project, a Pulitzer Prize-winning journalist Paul Salopek reports from different locations.
- This example confirms the fractal model.

2. Formulation of the Problem

- To improve teaching and learning, it is important to understand how knowledge propagates.
- Traditional knowledge propagation models are based on diff, equations – similar to epidemics propagation.
- In these models, for large times t, the number of new learners decreases as $r(t) \approx A \cdot \exp(-\alpha \cdot t)$.
- Some empirical data suggests that this decrease follows the power law: $r(t) \approx A \cdot t^{-\alpha}$.
- Power laws are ubiquitous in real life.
- These laws underlie *fractal* techniques pioneered by B. Mandelbrot.
- In this talk, we check which model is better.

3. Out of Eden Walk Project: A Description

- Commenced on January 10th, 2013 in Ethiopia.
- The Out of Eden Walk is a 7-year, 21,000 mile long, storytelling journey created by Paul Salopek.
- Paul Salopek is a two-time Pulitzer Prize winning journalist.
- This project is sponsored by the National Geographic Society.
- Reports from this journey regularly appear:
 - in the National Geographic magazine;
 - in leading newspapers: NY Times, Washington Post, Chicago Tribune, Los Angeles Times, etc.;
 - on the US National Public Radio (NPR).

4. The Journey Starts in Ethiopia

5. The Journey Starts in Ethiopia (cont-d)

6. Walking Through Jerusalem

Outline Formulation of the . . . Out of Eden Walk . . . This Project Has... Out of Eden Walk . . . Power Law Model . . . How We Compare: . . . Comparison Results Conclusions Home Page Title Page Page 7 of 15 Go Back Full Screen Close Quit

7. It Is Not Only About Beauty of the Faraway Lands: Refugees

8. This Project Has Important Educational and Knowledge Propagation Goals

- Main objective: to enhance education and knowledge propagation as main features of journalism.
- Main idea: *slow journalism* revealing human stories and world events from the ground, at a walking pace.
- The project has largely succeeded in this goal:
 - the website has thousands of followers worldwide,
 - there are also many Facebook and Twitter followers;
 - over 200 schools worldwide regularly use Salopek's reports to teach about world's cultures.

9. Out of Eden Walk Project: Technical Details

- After visiting an area, Paul Salopek publishes a dispatch describing his impressions and thoughts.
- As of now, there are more than 100 dispatches.
- Followers are welcome to add comments after each dispatch.
- After two weeks, each dispatch gathers from 15 to more than 250 comments.
- These comments are part of the knowledge propagation process.
- We trace how the number of comments made by the readers changes with time.
- This number reflects how the knowledge contained in a dispatch propagates with time.

10. Power Law Model vs. Traditional Approach

- In the power law model, the number of comments r(t) decreases with t as $r(t) = A \cdot t^{-\alpha}$.
- This model has two parameters: A and $\alpha > 0$.
- Traditional models use differential equations:

$$\frac{dr}{dt} = -f(r).$$

- When r = 0, we have f(r) = 0.
- The simplest function f(r) with f(0) = 0 is linear: $f(r) = \alpha \cdot r$.
- For this f(r), we already get a 2-parametric family of solutions $r(t) = A \cdot \exp(-\alpha \cdot t)$.
- So, we compare power law with this exponential model.

Formulation of the...

Outline

Out of Eden Walk...

Out of Eden Walk...

This Project Has...

Power Law Model...

How We Compare: . . .

Comparison Results

Conclusions

Home Page

Title Page

Go Back

00 200

Full Screen

Close

Quit

11. How We Compare: Technical Details

- How the number of comments r(t) depends on time t?
 - exponential model: $r(t) \approx r_0(t) = A \cdot \exp(-\alpha \cdot t)$;
 - power law model: $r(t) \approx r_0(t) = A \cdot t^{-\alpha}$.
- To check which model is more adequate, we use the chi-square criterion

$$\chi^2 \stackrel{\text{def}}{=} \sum_t \frac{(r(t) - r_0(t))^2}{r_0(t)}.$$

- To estimate A and α , we use both Least Squares $\sum_{i} e_i^2 \to \min$ and robust (ℓ^1) estimation $\sum_{i} |e_i| \to \min$.
- Result: the power law is more adequate:
 - for exponential model H_0 , $p \ll 0.05$, so H_0 is rejected;
 - for power law model H_0 , $p \gg 0.05$, so H_0 is not rejected.

Outline

Formulation of the...

Out of Eden Walk...

This Project Has...

Out of Eden Walk...

Power Law Model...

How We Compare: . . .

Comparison Results

Conclusions

Home Page

Title Page

←

Page 12 of 15

Go Back

Full Screen

Close

Close

Quit

12. Comparison Results

Dispatch Title	N_c	χ_p^2	$\chi^2_{p,1}$	χ_e^2	p_p	$p_{p,1}$	p_e
Let's Walk	271	30.6	30.0	31,360	0.33	<u>0.37</u>	0.00
Sole Brothers	61	22.1	22.8	83	<u>0.76</u>	<u>0.74</u>	0.00
The Glorious							
Boneyard	59	16.3	18.6	262	<u>0.96</u>	<u>0.91</u>	0.00
The Self-Love							
Boat	67	63.1	60.0	124	0.00	0.00	0.00
Go Slowly–Work							
Slowly	91	33.0	31.5	821	<u>0.24</u>	<u>0.29</u>	0.00
The Camel and							
the Gyrocopter	52	28.4	24.6	72	0.45	<u>0.65</u>	0.00
Lines in Sand	69	21.4	18.3	89	0.81	0.92	0.00

Outline Formulation of the . . . Out of Eden Walk . . . This Project Has... Out of Eden Walk . . . Power Law Model . . . How We Compare: . . . Comparison Results Conclusions Home Page Title Page **>>** Page 13 of 15 Go Back

Full Screen

Close

Quit

13. Conclusions

- To improve teaching and learning, it is important to know how knowledge propagates.
- Traditional models of knowledge propagation are similar to differential-equations-based models in physics.
- Recently, an alternative fractal-motivated power-law model of knowledge propagation was proposed.
- In this talk, we compare this model with the traditional model on the example of the Out of Eden Walk project.
- It turns out that for the related data, the power law is indeed a more adequate description.
- This shows that the fractal-motivated power law is a more adequate description of knowledge propagation.

14. Acknowledgments

- This material is based upon work supported by the National Science Foundation under
 - Grant No. OCI-1135525 for the CI-Team Diffusion project: The Virtual Learning Commons and
 - HRD-1242122 for the Cyber-ShARE Center of Excellence renewal.
- We are greatly thankful to Paul Salopek for his encouragement and advice.

