How to Help Graduate Students Become Independent Researchers: a Challenge and Possible Solutions

Jaime Nava and Vladik Kreinovich

Department of Computer Science University of Texas at El Paso El Paso, Texas 79968, USA jenava@miners.utep.edu, vladik@utep.edu

Graduate Students: . . . Formulation of the . . . When is the Best Time . . Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: Need for Fuzzy . . . Home Page **>>** Page 1 of 26 Go Back Full Screen Close Quit

1. Graduate Students: Typical Situation

- A PhD dissertation means that a student has successfully performed his or her own novel research.
- Usually this research results in several published papers.
- Because of this research emphasis,
 - a selection of students into a PhD program is based
 - on a student's creative ability to perform independent creative scientific research.
- Some students select their own research topics.
- However, in general, selecting a doable PhD topic is a difficult task in which a PhD advisor is indispensable.
- Once a topic is selected, both advisor and student concentrate on this topic.

Formulation of the . . . When is the Best Time. Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: . . . Need for Fuzzy . . . Home Page Title Page **>>** Page 2 of 26 Go Back Full Screen Close Quit

2. Formulation of the Problem

- Once a topic is selected, both advisor and student concentrate on this topic.
- They try to avoid distractions that can drastically slow down the student's graduation.
- As a result, many new PhDs do not get enough training in how to select doable new research problems.
- And this is what they will need to start doing once they graduate.
- Conclusion: we need to train students how to select doable research problems.

3. When is the Best Time for This Training?

- We need to train students how to select doable research problems.
- When is the *best time* for this training?
- In the beginning, a student is just learning the ropes, he or she is not yet ready for this training.
- After that, the student is concentrating on research and additional training will be distracting.
- However, once most research results are done, come the *last stage*, of actually writing the dissertation.
- At this *last stage*, the main emphasis is
 - not on creative new results,
 - but rather on writing down in a clear way what was done.

Formulation of the . . . When is the Best Time . . Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: . . . Need for Fuzzy . . . Home Page Title Page **>>** Page 4 of 26 Go Back Full Screen Close Quit

4. Our Proposal

- At the last stage, the main emphasis is not on new results, but on writing down what was done.
- This stage is one of the most frustrating and least creative parts of the graduate school.
- This stage is, in our opinion, the best time to learn the art of posing doable problems.
- We propose, at this stage, the student:
 - in parallel with writing a dissertation,
 - read new papers, talk to colleagues with the purpose of generating new problems and new ideas,
 - and then discuss the resulting problems and ideas with the advisor.
- Why? because this is exactly what the student will do when he or she graduates with a PhD.

5. What We Expect(ed) at the End of the Training and What We Achieved

- What we expect at the end of such training?
- That a student will learn, from the advisor, the basic skill of
 - identifying problems and ideas
 - which are doable.
- We decided to *try* this idea.
- Result: several interesting new results in several areas.
- In this talk, we concentrate on new results in so-called fuzzy logic.
- We describe one result in detail, and the second result if time allows.

Formulation of the . . . When is the Best Time . . Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: . . . Need for Fuzzy . . . Home Page Title Page **>>** Page 6 of 26 Go Back Full Screen Close Quit

6. Background. I. Why Fuzzy Logic

- In many applications, it is important to use *expert* knowledge.
- Experts often describe their knowledge in *imprecise* ("fuzzy") properties like "small".
- Example of imprecision: for a specific size, an expert may be not fully confident whether this size is small.
- To describe such properties, fuzzy logic was invented.
- In fuzzy logic, each statement is characterized by a degree of confidence.
- Usually, this degree is taken from the interval [0, 1], where:
 - 0 means absolutely false and
 - 1 means absolutely true.

Formulation of the . . . When is the Best Time . . Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: . . . Need for Fuzzy . . . Home Page Title Page **>>** Page 7 of 26 Go Back Full Screen Close Quit

7. Background. II. Fuzzy Logic Operations

- Typical situation:
 - we know: the degrees d(A) and d(B) of expert confidence in statements A and B;
 - we need: to estimate the expert's degree of confidence in composite statements like A&B, $A\lor B$:

$$d(A\&B) \approx f_\&(d(A), d(B));$$

$$d(A \lor B) \approx f_\lor(d(A), d(B));$$

$$d(\neg A) \approx f_\neg(d(A)).$$

- The functions providing such estimates are called *fuzzy* logic operations:
 - and-operations (a.k.a. t-norms),
 - or-operations (a.k.a. t-conorms),
 - negation operations, etc.

Formulation of the . . . When is the Best Time . . Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: . . . Need for Fuzzy . . . Home Page Title Page **>>** Page 8 of 26 Go Back Full Screen

Close

Quit

8. Background. II. Fuzzy Logic Operations (cont-d)

- Fuzzy logic operations must satisfy natural properties.
- Example 1:
 - Fact: A&B means the same as B&A.
 - Property: the and-operation $f_{\&}(a,b)$ must be commutative:

$$f_{\&}(a,b) = f_{\&}(b,a).$$

- Example 2:
 - Fact: A&(B&C) means the same as (A&B)&C.
 - Property: the and-operation $f_{\&}(a,b)$ must be associative:

$$f_{\&}(a, f_{\&}(b, c)) = f_{\&}(f_{\&}(a, b), c).$$

• *Known:* there exist a complete descriptions of all the operations that satisfy such properties.

Formulation of the . . . When is the Best Time . . Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: . . . Need for Fuzzv . . . Home Page Title Page **>>** Page 9 of 26 Go Back Full Screen Close Quit

9. Formulation of the Problem

- In principle: we can have very complex fuzzy logic operations.
- In practice: mostly simple algebraic operations are used:
 - linear;
 - quadratic;
 - fractional-linear; etc.
- Foundational challenge: how do we classify such algebraic fuzzy operations?
- What we prove in this talk:
 - to classify *algebraic* fuzzy logic operations,
 - we do not need to use *all* the usual properties.

10. Motivating Result: Description of All Quadratic And-Operations

• Consider quadratic functions $f_{\&}: [0,1] \times [0,1] \rightarrow [0,1]$: $f_{\&}(a,b) = c_0 + c_1 \cdot a + c_b \cdot b + c_{aa} \cdot a^2 + c_{ab} \cdot a \cdot b + c_{bb} \cdot b^2.$

• Properties:

- the function $f_{\&}(a, b)$ is monotonic (non-decreasing) in each variable;
- $f_{\&}$ is *conservative* in the sense that it coincides with the usual logical operation a&b for $a,b \in \{0,1\}$:

$$f_{\&}(0,0) = f_{\&}(0,1) = f_{\&}(1,0) = 0; \quad f_{\&}(1,1) = 1.$$

- Result (H.T. Nguyen, V. Kreinovich): the only quadratic and-operation with these properties is $f_{\&}(a,b) = a \cdot b$.
- Comment: we did not use commutativity or associativity.

Graduate Students: . . .

Formulation of the . . .

When is the Best Time . . .

Our Proposal

What We Expect(ed)...

Background. I. Why...

Motivating Result:...

New Result: . . .

Need for Fuzzy . . .

Home Page

Title Page

Page 11 of 26

Go Back

Full Screen

Close

11. New Result: Description of All Quadratic Or-Operations

- Consider quadratic functions $f_{\vee}: [0,1] \times [0,1] \rightarrow [0,1]$: $f_{\vee}(a,b) = c_0 + c_1 \cdot a + c_b \cdot b + c_{aa} \cdot a^2 + c_{ab} \cdot a \cdot b + c_{bb} \cdot b^2.$
- Properties:
 - the function $f_{\vee}(a, b)$ is monotonic (non-decreasing) in each variable;
 - f_{\vee} is conservative in the sense that it coincides with the usual logical operation $a \vee b$ for $a, b \in \{0, 1\}$:

$$f_{\vee}(0,0) = 0$$
, $f_{\vee}(0,1) = f_{\vee}(1,0) = f_{\&}(1,1) = 1$.

- Result: the only quadratic and-operation with these properties is $f_{\vee}(a,b) = a + b a \cdot b$.
- Comment: we did not use commutativity or associativity.

Graduate Students: . . .

Formulation of the . . .

When is the Best Time . . .

Our Proposal

What We Expect(ed)...

Background. I. Why...

Motivating Result:...

New Result: . . .

Need for Fuzzy . . .

Home Page

Title Page

Page 12 of 26

Go Back

Full Screen

Close

12. Negation Operations: Usual Properties

- Main algebraic property:
 - Fact: $\neg(\neg A)$ means the same as A.
 - Property: the negation operation $f_{\neg}(a)$ must satisfy the property:

$$f_{\neg}(f_{\neg}(a)) = a.$$

- Monotonicity: the more we believe in A, the less we believe in $\neg A$.
- Conclusion: the function $f_{\neg}(a)$ must be non-increasing.
- Conservative: for a = 0 ("false") and for a = 1 ("true"), $f_{\neg}(a)$ must coincide with the truth value of "not a":

$$f_{\neg}(0) = 1, \quad f_{\neg}(1) = 0.$$

• Consider quadratic functions $f_{\neg}:[0,1] \to [0,1]$:

$$f_{\neg}(a) = c_0 + c_1 \cdot a + c_{aa} \cdot a^2. \tag{1}$$

- Properties:
 - the function $f_{\neg}(a)$ satisfies the property

$$f_{\neg}(f_{\neg}(a)) = a \text{ for all } a;$$

• f_{\neg} is conservative in the sense that it coincides with the usual logical operation $\neg a$ for $a \in \{0, 1\}$:

$$f_{\neg}(0) = 1, \quad f_{\neg}(1) = 0.$$

- Result: the only quadratic negation operation with these properties is $f_{\neg}(a) = 1 a$.
- Comment: we did not use monotonicity.

Graduate Students: . . .

Formulation of the . . .

When is the Best Time . .

Our Proposal

What We Expect(ed)...

Background. I. Why...

Motivating Result:...

New Result: . . .

Need for Fuzzy . . .

Home Page
Title Page

4

1 →

Page 14 of 26

Go Back

Full Screen

Full Screen

Close

$$f_{\neg}(a) = \frac{a + b \cdot x}{c + d \cdot x}.$$

- Properties:
 - the function $f_{\neg}(a)$ satisfies the property

$$f_{\neg}(f_{\neg}(a)) = a \text{ for all } a;$$

• f_{\neg} is conservative in the sense that it coincides with the usual logical operation $\neg a$ for $a \in \{0, 1\}$:

$$f_{\neg}(0) = 1, \quad f_{\neg}(1) = 0.$$

- Result: the only fractional-linear negation operation with these properties is $f_{\neg}(a) = 1 a$.
- Comment: we did not use monotonicity.

Graduate Students: . . .

Formulation of the . . .

When is the Best Time . . .

Our Proposal

What We Expect(ed)...

Background. I. Why...
Motivating Result:...

New Result: . . .

Need for Fuzzy...

Home Page

Title Page

Page 15 of 26

Go Back

Full Screen

Close

Close

15. Acknowledgments

This work was supported in part

- by the National Science Foundation grants HRD-0734825 and DUE-0926721, and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

Formulation of the . . . When is the Best Time . . Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: . . . Need for Fuzzy . . . Home Page Title Page **>>** Page 16 of 26 Go Back Full Screen Close Quit

16. Need for Fuzzy "Exclusive Or" Operations

- One of the main objectives of fuzzy logic is to formalize commonsense and expert reasoning.
- People use logical connectives like "and" and "or".
- Commonsense "or" can mean both "inclusive or" and "exclusive or".
- Example: A vending machine can produce either a coke or a diet coke, but not both.
- In mathematics and computer science, "inclusive or" is the one most frequently used as a basic operation.
- Fact: "Exclusive or" is also used in commonsense and expert reasoning.
- Thus: There is a practical need for a fuzzy version.
- Comment: "exclusive or" is actively used in computer design and in quantum computing algorithms

Formulation of the . . . When is the Best Time . . Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: Need for Fuzzy . . . Home Page Title Page **>>** Page 17 of 26 Go Back Full Screen Close Quit

- Fuzzy analogue of a classical logic operation op:
 - we know the experts' degree of belief a = d(A) and b = d(B) in statements A and B;
 - based on a and b, we want to estimate the degree of belief in "A op B", as $f_{op}(a, b)$.
- For op = &, we get an "and"-operation (t-norm).
- For op = \vee , we get an "or"-operation (t-conorm).
- As usual, the fuzzy "exclusive or" operation must be an extension of the corresponding crisp operation \oplus .
- In the traditional 2-valued logic, $0 \oplus 0 = 1 \oplus 1 = 0$ and $0 \oplus 1 = 1 \oplus 0 = 1$.
- Thus, the desired fuzzy "exclusive or" operation $f_{\oplus}(a,b)$ must satisfy the same properties:

$$f_{\oplus}(0,0) = f_{\oplus}(1,1) = 0; \quad f_{\oplus}(0,1) = f_{\oplus}(1,0) = 1.$$

Graduate Students: . . .

Formulation of the . . .

When is the Best Time . . .

Our Proposal

What We Expect(ed)...

Background. I. Why...

Motivating Result:...

New Result: . . .

Need for Fuzzy...

Home Page

Title Page

Page 18 of 26

Go Back

Full Screen

Close

18. Need for the Least Sensitivity: Reminder

- One of the main ways to elicit degree of certainty d is to ask to pick a value on a scale. Example:
 - on a scale of 0 to 10, an expert picks 8, so we get d = 8/10 = 0.8;
 - on a scale from 0 to 8, whatever we pick, we cannot get 0.8: 6/8 = 0.75 < 0.8; 7/8 = 0.875 > 0.8.
 - the expert will probably pick 6, with

$$d' = 6/8 = 0.75 \approx 0.8.$$

• It is desirable: that the result of the fuzzy operation not change much if we slightly change the inputs:

$$|f(a,b) - f(a',b')| \le k \cdot \max(|a-a'|,|b-b'|),$$

with the smallest possible k .

• Such operations are called the least sensitive or the most robust.

19. For t-Norms and t-Conorms, the Least Sensitivity Requirement Leads to Reasonable Operations

- Known results:
 - There is only one least sensitive t-norm ("and"-operation)

$$f_{\&}(a,b) = \min(a,b).$$

- There is also only one least sensitive t-conorm ("or"-operation)

$$f_{\vee}(a,b) = \max(a,b).$$

• What we do in this presentation: we describe the least sensitive fuzzy "exclusive or" operation.

called a fuzzy "exclusive or" operation if

$$f(0,0) = f(1,1) = 0$$
 and $f(0,1) = f(1,0) = 1$.

- Comment: We could also require other conditions, e.g., commutativity and associativity.
- However, our main objective is to select a single operation which is the least sensitive.
- Fact: The weaker the condition, the larger the class of operations that satisfy these conditions.
- Thus: the stronger the result that our operation is the least sensitive in this class.
- Conclusion: We select the weakest possible condition to make our result as strong as possible.

Graduate Students: . . . Formulation of the . . . When is the Best Time . . Our Proposal What We Expect(ed)... Background. I. Why . . . Motivating Result: . . . New Result: . . . Need for Fuzzy . . .

Home Page

Title Page

Full Screen

21. Main Result

Definition:

- Let F be a class of functions from $[0,1] \times [0,1]$ to [0,1].
- We say that a function $f \in F$ is the least sensitive in the class F if it satisfies the following two conditions:
 - for some real number k, the function f satisfies the condition

$$|f(a,b) - f(a',b')| \le k \cdot \max(|a - a'|, |b - b'|);$$

- no other function $f \in F$ satisfies this condition.

Theorem: In the class of all fuzzy "exclusive or" operations, the following function is the least sensitive:

$$f_{\oplus}(a,b) = \min(\max(a,b), \max(1-a,1-b)).$$

$$f_{\oplus}(a,b) = \min(\max(a,b), \max(1-a,1-b)).$$

• Fact: in 2-valued logic, "exclusive or" \oplus can be described in terms of the "inclusive or" operation \vee as

$$a \oplus b \Leftrightarrow (a \lor b) \& \neg (a \& b).$$

- Natural idea:
 - replace \vee with the least sensitive "or"-operation $f_{\vee}(a,b) = \max(a,b)$,
 - replace & with the least sensitive "and"-operation $f_{\&}(a,b) = \min(a,b)$, and
 - replace \neg with the least sensitive negation operation $f_{\neg}(a) = 1 a$,
- Result: we get the expression given in the Theorem.

Graduate Students: . . .

Formulation of the . . .

When is the Best Time . . .

Our Proposal

What We Expect(ed)...

Background. I. Why...

Motivating Result:...

New Result: . . .

Need for Fuzzy...

Home Page

Title Page

Page 23 of 26

Go Back

Full Screen

Close

23. Fuzzy "Exclusive Or" Operations f(a, b) Which Are the Least Sensitive on Average

- Idea: select f so that on average, the change in a and b leads to the smallest possible change Δc in c = f(a, b).
- Assumption: Δa and Δb are independent random variables with 0 mean and small variance σ^2 .
- Objective: estimate $\Delta c = f(a + \Delta a, b + \Delta b) f(a, b)$.
- Since Δa and Δb are small, we can keep only linear terms in the Taylor series of Δc w.r.t. Δa and Δb :

$$\Delta c \approx \frac{\partial f}{\partial a} \cdot \Delta a + \frac{\partial f}{\partial b} \cdot \Delta b.$$

• Since the variables are independent with 0 mean, the mean of Δc is also 0, and variance of Δc is equal to

$$\sigma^2(a,b) = \left(\left(\frac{\partial f}{\partial a} \right)^2 + \left(\frac{\partial f}{\partial b} \right)^2 \right) \cdot \sigma^2.$$

24. Fuzzy "Exclusive Or" Operations Which Are the Least Sensitive on Average (cont-d)

• Reminder: for each a and b, the variance $\sigma^2(a, b)$ of Δc is equal to

$$\sigma^{2}(a,b) = \left(\left(\frac{\partial f}{\partial a} \right)^{2} + \left(\frac{\partial f}{\partial b} \right)^{2} \right) \cdot \sigma^{2}.$$

- To get the "average" variance, it is reasonable to average this value $\sigma^2(a, b)$ over all possible a and b.
- Resulting average value: $I \cdot \sigma^2$, where

$$I \stackrel{\text{def}}{=} \int_{a=0}^{a=1} \int_{b=0}^{b=1} \left(\left(\frac{\partial f}{\partial a} \right)^2 + \left(\frac{\partial f}{\partial b} \right)^2 \right) da \, db.$$

- We want: the average sensitivity to be the smallest.
- Conclusion: we select the function f(a, b) for which the integral I takes the smallest possible value.

Graduate Students: . . .

Formulation of the . . .

When is the Best Time . . .

Our Proposal

What We Expect(ed)...

Background. I. Why...

Motivating Result:...

New Result: . . .

Need for Fuzzy . . .

Home Page

Title Page

Page 25 of 26

Go Back

Full Screen

Close Quit

25. New Result: Formulation

• Reminder: we consider "exclusive or" operations f(a, b), i.e., functions $f: [0, 1] \times [0, 1] \to [0, 1]$ for which:

$$f(0,b) = b$$
, $f(a,0) = a$, $f(1,b) = 1-b$, and $f(a,1) = 1-a$.

• Main result: among all such operations, the operation which is the least sensitive on average has the form

$$f_{\oplus}(a,b) = a + b - 2 \cdot a \cdot b.$$

- Interpretation:
 - the classical (2-valued) "exclusive or" operation $a \oplus b$ can be represented as $(a \lor b) \& (\neg a \lor \neg b)$;
 - use the fuzzy analogues of &, \vee , and \neg which are the least sensitive on average:

$$f_{\&}(a,b) = \max(p+q-1,0); \quad f_{\lor}(a,b) = p+q-p\cdot q;$$

 $f_{\neg}(a) = 1-a.$

Graduate Students: . . .

Formulation of the . . .

When is the Best Time . .

Our Proposal

What We Expect(ed) . . .

Background. I. Why . . .

Motivating Result: . . .

New Result: . . .
Need for Fuzzy . . .

Home Page

Title Page

44

4

Page 26 of 26

Go Back

Full Screen

Close