Why Geometric Progression in Selecting the LASSO Parameter: A Theoretical Explanation

William Kubin¹, Yi Xie¹, Laxman Bokati¹,
Vladik Kreinovich¹, and Kittawit Autchariyapanitkul²

¹Computational Science Program

University of Texas at El Paso

ElPaso, Texas 79968, USA

wkubin@miners.utep.edu, yxie3@miners.utep.edu,

lbokati@miners.utep.edu, vladik@utep.edu

²Maejo University, Thailand, kittawit_a@mju.ac.th

Need for Regression Need for Linear Regression The Least Squares . . . Need to Go Beyond . . . LASSO Method How λ Is Selected: . . . Natural Uniqueness.. Definitions and the Discussion Home Page **>>** Page 1 of 31 Go Back Full Screen Close Quit

Need for Regression

- In many real-life situations:
 - we know that the quantity y is uniquely determined by the quantities x_1, \ldots, x_n , but
 - we do not know the exact formula for this dependence.
- For example, in physics:
 - we know that the aerodynamic resistance increases with the body's velocity, but
 - we often do not know how exactly.
- In economics:
 - we know that a change in tax rate influences the economic growth, but
 - we often do not know how exactly.

Need for Regression

Need for Linear Regression

The Least Squares . . .

Need to Go Beyond . . .

LASSO Method How λ Is Selected: . . .

Natural Uniqueness . . .

Definitions and the

Discussion

Title Page

Home Page

>>

Page 2 of 31

Go Back

Full Screen

Close

2. Need for Regression (cont-d)

- In all such cases, we need to find the dependence $y = f(x_1, \ldots, x_n)$ between several quantities.
- This dependence must be determined based on the available data.
- We need to use previous observations $(x_{k1}, \ldots, x_{kn}, y_k)$ in each of which we know both:
 - the values x_{ki} of the input quantities x_i and
 - the value y_k of the output quantity y.
- In statistics, determining the dependence from the data is known as *regression*.

3. Need for Linear Regression

- In most cases, the desired dependence is smooth and usually, it can even be expanded in Taylor series.
- In many practical situations, the range of the input variables is small, i.e., we have $x_i \approx x_i^{(0)}$ for some $x_i^{(0)}$.
- In such situations, after we expand the desired dependence in Taylor series, we can:
 - safely ignore terms which are quadratic or of higher order with respect to the differences $x_i x_i^{(0)}$ and
 - only keep terms which are linear in terms of these differences:

$$y = f(x_1, \dots, x_n) = c_0 + \sum_{i=1}^n a_i \cdot (x_i - x_i^{(0)}).$$

• Here $c_0 \stackrel{\text{def}}{=} f\left(x_1^{(0)}, \dots, x_n^{(0)}\right)$ and $a_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i|_{x_i = x_i^{(0)}}}$.

4. Need for Linear Regression (cont-d)

• This expression can be simplified into:

$$y = a_0 + \sum_{i=1}^{n} a_i \cdot x_i$$
, where $a_0 \stackrel{\text{def}}{=} c_0 - \sum_{i=1}^{n} a_i \cdot x_i^{(0)}$.

- In practice, measurements are never absolutely precise.
- So, when we plug in the actually measured values x_{ki} and y_i , we will only get an approximate equality:

$$y_k \approx a_0 + \sum_{i=1}^m a_i \cdot x_{ki}.$$

- Thus, the problem of finding the desired dependence can be reformulated as follows:
 - given the values y_k and x_{ki} ,
 - find the coefficients a_i for which the approximate equality holds for all k.

Need for Linear Regression The Least Squares . . . Need to Go Bevond . . . LASSO Method How λ Is Selected: . . . Natural Uniqueness . . . Definitions and the . . . Discussion Home Page Title Page **>>** Page 5 of 31 Go Back Full Screen Close Quit

Need for Regression

5. The Usual Least Squares Approach

- We want each left-and side y_k of the approximate equality to be close to the corresponding right-hand side.
- In other words, we want the left-hand-side tuple (y_1, \ldots, y_K) to be close to the right-hand-sides tuple

$$\left(\sum_{i=1}^m a_i \cdot x_{1i}, \dots, \sum_{i=1}^m a_i \cdot x_{Ki}\right).$$

- It is reasonable to select a_i for which the distance between these two tuples is the smallest possible.
- Minimizing the distance is equivalent to minimizing the square of this distance, i.e., the expression

$$\sum_{k=1}^{K} \left(y_k - \left(a_0 + \sum_{i=1}^{m} a_i \cdot x_{ki} \right) \right)^2.$$

• This minimization is know as the *Least Squares method*.

Need for Regression

Need for Linear Regression

The Least Squares...

LASSO Method

How λ Is Selected:...

Need to Go Beyond . . .

Natural Uniqueness...

Definitions and the . . .

Discussion

Home Page

Title Page

Go Back

Full Screen

Close

6. The Least Squares Approach (cont-d)

- This is the most widely used method for processing data.
- The corresponding values a_i can be easily found if:
 - we differentiate the quadratic expression with respect to each of the unknowns a_i and then
 - equate the corresponding linear expressions to 0.
- Then, we get an easy-to-solve systems of linear equations.

7. Discussion

- The above heuristic idea becomes well-justified:
 - when we consider the case when the measurement errors are normally distributed
 - with 0 mean and the same standard deviation σ .
- This indeed happens:
 - when the measuring instrument's bias has been carefully eliminated, and
 - most major sources of measurement errors have been removed.
- In such situations, the resulting measurement error is a joint effect of many similarly small error components.
- For such joint effects, the Central Limit Theorem states that the resulting distribution is close to Gaussian.

8. Discussion (cont-d)

- Once we know the probability distributions, a natural idea is to select the most probable values a_i .
- In other words, we select the values for which the probability to observe the values y_k is the largest.
- For normal distributions, this idea leads exactly to the least squares method.

9. Need to Go Beyond Least Squares

- Sometimes, we know that all the inputs x_i are essential to predict the value y of the desired quantity.
- In such cases, the least squares method works reasonably well.
- The problem is that in practice, we often do not know which inputs x_i are relevant and which are not.
- As a result, to be on the safe side, we include as many inputs as possible.
- Many of them will turn out to be irrelevant.
- If all the measurements were exact, this would not be a problem:
 - for irrelevant inputs x_i , we would get $a_i = 0$, and
 - the resulting formula would be the desired one.

10. Need to Go Beyond Least Squares (cont-d)

- However, because of the measurement errors, we do not get exactly 0s.
- Moreover, the more such irrelevant variables we add:
 - the more non-zero "noise" terms $a_i \cdot x_i$ we will have, and
 - the larger will be their sum.
- This will negatively affecting the accuracy of the formula,
- Thus, it will negative affect the accuracy of the resulting desired (non-zero) coefficients a_i .

11. LASSO Method

- We know that many coefficients will be 0; so, a natural idea is:
 - instead of considering all possible tuples

$$a \stackrel{\text{def}}{=} (a_0, a_1, \dots, a_n),$$

- to only consider tuples for which a bounded number of coefficients is 0: $||a||_0 \le B$ for some constant B.
- Here, $||a||_0$ (known as the ℓ_0 -norm) denotes the number of non-zero coefficients in a tuple.
- The problem with this natural idea is that the resulting optimization problem becomes NP-hard.
- This means, crudely speaking, that:
 - no feasible algorithm is possible
 - that would always solve all the instances of this problem.

Need for Regression Need for Linear Regression The Least Squares . . . Need to Go Beyond . . . LASSO Method How λ Is Selected: . . . Natural Uniqueness.. Definitions and the Discussion Home Page Title Page **>>** Page 12 of 31 Go Back Full Screen

Close

12. LASSO Method (cont-d)

- A usual way to solve such problem is:
 - by replacing the ℓ_0 -norm with an ℓ_1 -norm $\sum_{i=0}^{n} |a_i|$;
 - this norm is convex, therefore, the optimization problem is easier to solve.

• So:

- instead of solving the problem of unconditionally minimizing the quadratic expression,
- we minimize this expression under the constraint $\sum_{i=0}^{n} |a_i| \leq B$ for some constant B.
- This minimum can be attained when we have strict inequality or when the constraint becomes an equality.
- If the constraint is a strict inequality, then we have a local minimum.

13. LASSO Method (cont-d)

- For quadratic functions, a local minimum is exactly the global minimum that we try to avoid.
- Thus, we must consider the case when the constraint becomes an equality $\sum_{i=0}^{n} |a_i| = B$.
- The Lagrange multiplier method leads to minimizing the expression:

$$\sum_{k=1}^{K} \left(y_k - \left(a_0 + \sum_{i=1}^{m} a_i \cdot x_{ki} \right) \right)^2 + \lambda \cdot \sum_{i=0}^{n} |a_i|.$$

• This minimization is known as the *Least Absolute Shrink-age and Selection Operator* method – *LASSO*, for short.

14. How λ Is Selected: Main Idea

- The success of the LASSO method depends on what value λ we select.
- When λ is close to 0, we retain all the problems of the usual least squares method.
- When λ is too large, the λ -term dominates.
- So we select all the values $a_i = 0$, which do not provide any good description of the desired dependence.
- In different situations, different values λ will work best.
- The more irrelevant inputs we have:
 - the more important it is to deviate form the least squares, and
 - thus, the larger the parameter λ that describes this deviation should be.

Need for Regression

Need for Linear Regression

The Least Squares...

Need to Go Beyond . . .

LASSO Method

How λ Is Selected: . . .

Natural Uniqueness...

Definitions and the

Discussion

Title Page

Home Page

44 >>

Page 15 of 31

Go Back

Full Screen

Class

Close

15. How λ Is Selected: Main Idea (cont-d)

- We rarely know beforehand which inputs are relevant
 this is the whole problem.
- So we do now know beforehand what value λ we should use.
- ullet The best value λ needs to be decided based on the data.
- A usual way of testing any dependence is by randomly dividing the data into:
 - a (larger) training set and
 - a (smaller) testing set.
- We use the training set to find the value of the desired parameters (in our case, the parameters a_i).
- Then we use the testing set to gauge how good is the model.

Need for Regression Need for Linear Regression The Least Squares . . . Need to Go Beyond . . . LASSO Method How λ Is Selected: . . . Natural Uniqueness . . . Definitions and the Discussion Home Page Title Page **>>** Page 16 of 31 Go Back Full Screen Close Quit

- To get more reliable results, we can repeat this procedure several times.
- In precise terms, we select several training subsets

$$S_1,\ldots,S_m\subseteq\{1,\ldots,K\}.$$

• For each of these subsets S_j , we find the values $a_{ij}(\lambda)$ that minimize the functional

$$\sum_{k \in S_i} \left(y_k - \left(a_0 + \sum_{i=1}^m a_i \cdot x_{ki} \right) \right)^2 + \lambda \cdot \sum_{i=0}^n |a_i|.$$

• We can then compute the overall inaccuracy, as

$$\Delta(\lambda) \stackrel{\text{def}}{=} \sum_{j=1}^{m} \left(\sum_{k \notin S_j} \left(y_k - \left(a_{j0}(\lambda) + \sum_{i=1}^{m} a_{ji}(\lambda) \cdot x_{ki} \right) \right)^2 \right).$$

• We then select λ for which $\Delta(\lambda)$ is the smallest.

Need for Regression

Need for Linear Regression

The Least Squares...

Need to Go Beyond...

LASSO Method

How λ Is Selected: . . .

Natural Uniqueness...

Definitions and the...

Discussion

Home Page

Title Page

Go Back

_ . . .

Full Screen

Close

17. How λ Is Selected: Details

- In the ideal world, we should be able to try all possible real values λ .
- However, there are infinitely many real numbers, and in practice, we can only test finitely many of them.
- Which set of values λ should we choose?
- Empirically, the best results are obtained if we use the values λ from a geometric progression $\lambda_n = c_0 \cdot q^n$.
- Of course, a geometric progression also has infinitely many values, but we do not need to test all of them.
- Usually, as λ increases from 0, the value $\Delta(\lambda)$ first decreases then increases again.
- So, it is enough to catch a moment when this value starts increasing.

18. How λ Is Selected: Details (cont-d)

- A natural question is: why geometric progression works best?
- In this talk, we provide a theoretical explanation for this empirical fact.

19. What Do We Want?

• At first glance, the answer is straightforward: we want to select a discrete set of values, i.e., a set

$$S = \{ \ldots < \lambda_n < \lambda_{n+1} < \ldots \}.$$

- However, a deeper analysis shows that the answer is not so simple.
- Indeed, what we are interested in is the dependence between the quantities y and x_i .
- However, what we have to deal with is not the quantities themselves, but their numerical values.
- And the numerical values depend on what unit we choose for measuring these quantities; for example:
 - a person who is 1.7 m high is also 170 cm high,
 - an April 2020 price of 2 US dollars is the same as the price of $2 \cdot 23500 = 47000$ Vietnam Dong, etc.

Need for Linear Regression The Least Squares . . . Need to Go Beyond . . . LASSO Method How λ Is Selected: . . . Natural Uniqueness . . . Definitions and the Discussion Home Page Title Page **>>** Page 20 of 31 Go Back Full Screen Close Quit

Need for Regression

20. What Do We Want (cont-d)

- In most cases, the choice of the units is rather arbitrary.
- It is therefore reasonable to require that the results of data processing should not depend on the unit.
- And hereby lies a problem.
- Suppose that we keep the same units for x_i but change a measuring unit for y to a one which is α times smaller.
- In this case, the new numerical values of y become α times larger: $y \to y' = \alpha \cdot y$.
- To properly capture these new values, we need to increase the original values a_i by the same factor:

$$a_i \to a_i' = \alpha \cdot a_i.$$

• In terms of these new values, the minimized expression takes the form

$$\sum_{k=1}^{K} \left(y_k' - \left(a_0' + \sum_{i=1}^{m} a_i' \cdot x_{ki} \right) \right)^2 + \lambda \cdot \sum_{i=0}^{n} |a_i'|.$$

• Taking into account that $y'_k = \alpha \cdot y_k$ and $a'_i = \alpha \cdot a_i$, we get:

$$\alpha^2 \cdot \sum_{k=1}^K \left(y_k - \left(a_0 + \sum_{i=1}^m a_i \cdot x_{ki} \right) \right)^2 + \alpha \cdot \lambda \cdot \sum_{i=0}^n |a_i|.$$

• Minimizing an expression is the same as minimizing α^{-2} times this expression, i.e., the modified expression

$$\sum_{k=1}^{K} \left(y_k - \left(a_0 + \sum_{i=1}^{m} a_i \cdot x_{ki} \right) \right)^2 + \alpha^{-1} \cdot \lambda \cdot \sum_{i=0}^{n} |a_i|.$$

Need for Regression

Need for Linear Regression

The Least Squares...

Need to Go Beyond...

LASSO Method

How λ Is Selected: . . .

Natural Uniqueness...

Definitions and the...

Discussion

Home Page

Title Page

Page 22 of 31

Go Back

Full Screen

Close

22. What Do We Want (cont-d)

- This new expression is similar to the original one, but with a new value of the LASSO parameter $\lambda' = \alpha^{-1} \cdot \lambda$.
- So, when we change the measuring units, the values of λ are also re-scaled i.e., multiplied by a constant.
- What was the set $\{\lambda_n\}$ in the old units becomes the re-scaled set $\{\alpha^{-1} \cdot \lambda_n\}$ in the new units.
- This is, in effect, the same set but corresponding to different measuring units.
- So, we cannot say that one of these sets is better than the other, they clearly have the same quality.
- Thus, we cannot choose a single set S, we must choose a family of sets $\{c \cdot S\}_c$, where

$$c \cdot S \stackrel{\text{def}}{=} \{c \cdot \lambda : \lambda \in S\}.$$

Need for Regression Need for Linear Regression The Least Squares . . . Need to Go Beyond . . . LASSO Method How λ Is Selected: . . . Natural Uniqueness . . . Definitions and the . . . Discussion Home Page Title Page **>>** Page 23 of 31 Go Back Full Screen Close Quit

23. Natural Uniqueness Requirement

- \bullet Eventually, we need to select some set S.
- We cannot select one set a priori, since with every set S, a set $c \cdot S$ also has the same quality.
- To fix a unique set, we can, e.g., fix one of the values

$$\lambda \in S$$
.

- Let us require that with this fixture, we will be end up with a unique optimal set S.
- This means, in particular, that:
 - if we select a real number $\lambda \in S$,
 - then the only set $c \cdot S$ that contains this number will be the same set S.
- Let us describe this requirement in precise terms.

Need for Linear Regression The Least Squares . . . Need to Go Beyond . . . LASSO Method How λ Is Selected: . . . Natural Uniqueness . . . Definitions and the Discussion Home Page Title Page **>>** Page 24 of 31 Go Back Full Screen Close Quit

Need for Regression

- for every $\lambda \in S$,
- there exists a $\varepsilon > 0$ such that $|\lambda \lambda'| > \varepsilon$ for all other $\lambda' \in S$.
- For such sets, for each element λ :
 - if there are larger elements,
 - then there is the "next" element i.e., the smallest element which is larger than λ .
- Similarly:
 - if there are smaller elements,
 - then there exists the "previous" element i.e., the largest element which is smaller than λ .
- Thus, such sets have the form

$$\{\ldots < \lambda_{n-1} < \lambda_n < \lambda_n < \ldots\}.$$

Need for Linear Regression

The Least Squares . . .

Need for Regression

Need to Go Beyond . . . LASSO Method

How λ Is Selected: . . .

Natural Uniqueness . . . Definitions and the

Discussion

Home Page Title Page

>>

Page 25 of 31

Go Back

Full Screen

Close

- A discrete set S is called uniquely determined if for every $\lambda \in S$ and c > 0, if $\lambda \in c \cdot S$, then $c \cdot S = S$.
- Proposition. A set S is uniquely determined if and only if it is a geometric progression, i.e.:

$$S = \{c_0 \cdot q^n : n = \dots, -2, -1, 0, 1, 2, \dots\}$$
 for some c_0 and q .

• This results explains why geometric progression is used to select the LASSO parameter λ .

Need for Linear Regression The Least Squares . . . Need to Go Beyond . . . LASSO Method How λ Is Selected: . . . Natural Uniqueness . . . Definitions and the . . . Discussion Home Page Title Page **>>** Page 26 of 31 Go Back Full Screen Close Quit

Need for Regression

26. Proof

- It is easy to prove that every geometric progression is uniquely determined.
- Indeed, if for $\lambda = c_0 \cdot q^n$, we have $\lambda \in c \cdot S$, this means that $\lambda = c \cdot c_0 \cdot q^m$ for some m, i.e., $c_0 \cdot q^n = c \cdot c_0 \cdot q^m$.
- Dividing both sides by $c_0 \cdot q^m$, we conclude that $c = q^{n-m}$ for some integer n-m.
- Let us show that in this case, $c \cdot S = S$.
- Indeed, each element x of the set $c \cdot S$ has the form $x = c \cdot c_0 \cdot q^k$ for some integer k.
- Substituting $c = q^{n-m}$ into this formula, we conclude that $x = c_0 \cdot q^{k+(n-m)}$, i.e., that $x \in S$.
- Similarly, we can prove that if $x \in S$, then $x \in c \cdot S$.

determined.

- \bullet Vice versa, let us assume that the set S is uniquely
- Let us pick any element $\lambda \in S$ and denote it by λ_0 .
- The next element we will denote by λ_1 , the next to next by λ_2 , etc.
- Similarly, the element previous to λ_0 will be denoted by λ_{-1} , previous to previous by λ_{-2} , etc.
- Thus, $S = \{..., \lambda_{-2}, \lambda_{-1}, \lambda_0, \lambda_1, \lambda_2, ...\}$.
- Clearly, $\lambda_1 \in S$, and for $q \stackrel{\text{def}}{=} \lambda_1/\lambda_0$, we have $\lambda_1 \in q \cdot S$ - since $\lambda_1 = (\lambda_1/\lambda_0) \cdot \lambda_0 = q \cdot \lambda_0$ for $\lambda_0 \in S$.
- Since the set S is uniquely determined, this implies that $q \cdot S = S$.
- Since $S = \{\ldots, \lambda_{-2}, \lambda_{-1}, \lambda_0, \lambda_1, \lambda_2, \ldots\}$, we have $q \cdot S = \{\ldots, q \cdot \lambda_{-2}, q \cdot \lambda_{-1}, q \cdot \lambda_0, q \cdot \lambda_1, q \cdot \lambda_2, \ldots\}.$

Need for Regression

Need for Linear Regression

The Least Squares...

Need to Go Bevond...

LASSO Method

How λ Is Selected: . . .

Natural Uniqueness...

Definitions and the...

Discussion

Home Page

Title Page

Page 28 of 31

Go Back

Full Screen

Close

- The sets S and $q \cdot S$ coincide.
- We know that $q \cdot \lambda_0 = \lambda_1$; thus:
 - the element next to $q \cdot \lambda_0$ in the set $q \cdot S$ i.e., the element $c \cdot \lambda_1$,
 - must be equal to the element which is next to λ_1 in the set S, i.e., to the element λ_2 :

$$\lambda_2 = q \cdot \lambda_1.$$

- For next to next elements, we get $\lambda_3 = q \cdot \lambda_2$ and, in general, we get $\lambda_{n+1} = q \cdot \lambda_n$ for all n.
- This is exactly the definition of a geometric progression.
- The proposition is proven.

Need for Regression Need for Linear Regression The Least Squares . . . Need to Go Beyond . . . LASSO Method How λ Is Selected: . . . Natural Uniqueness . . . Definitions and the . . . Discussion Home Page Title Page **>>** Page 29 of 31 Go Back Full Screen Close Quit

- Machine learning (e.g., deep learning) uses the gradient method $x_{i+1} = x_i \lambda_i \cdot \frac{\partial J}{\partial x_i}$ to minize J.
- Empirically the best strategy for selecting λ_i also follows approximately a geometric progression.
- For example, some algorithms use:
 - $\lambda_i = 0.1$ for the first ten iterations,
 - $\lambda_i = 0.01$ for the next ten iterations,
 - $\lambda_i = 0.001$ for the next ten iterations, etc.
- In this case, similarly, re-scaling of J is equivalent to re-scaling of λ .
- Thus, we need to have a family of sequences $\{c \cdot \lambda_i\}$ corresponding to different c > 0.
- A natural uniqueness requirement as we have shown leads to the geometric progression.

Need for Regression

Need for Linear Regression

The Least Squares...

Need to Go Beyond...

LASSO Method

How λ Is Selected: . . .

Natural Uniqueness...

Definitions and the...

Discussion

Home Page

Title Page

Page 30 of 31

Go Back

Full Screen

Close

30. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).

