# How to Train A-to-B and B-to-A Neural Networks So That the Resulting Transformations Are (Almost) Exact Inverses

Paravee Maneejuk<sup>1</sup>, Torben Peters<sup>2</sup>,
Claus Brenner<sup>2</sup>, and Vladik Kreinovich<sup>3</sup>

<sup>1</sup>Faculty of Economics, Chiang Mai University
Chiang Mai, Thailand, Mparavee@gmail.com

<sup>2</sup>Institute of Cartography and Geoinformatics
Leibniz University of Hannover, Hannover, Germany
peters@ikg.uni-hannover.de, Claus.Brenner@ikg.uni-hannover.de

<sup>3</sup>Department of Computer Science, University of Texas at El Paso
El Paso, Texas 79968, vladik@utep.edu

Need for A-to-B and . . . Need for Machine . . . Traditional . . . What We Need and Our Proposal Why It Works Comment What If We Have Proposed New . . . Home Page **>>** Page 1 of 27 Go Back Full Screen Close Quit

#### 1. Need for A-to-B and B-to-A Transformations

- In many practical problems, there are two (or more) different representations of a state, so that:
  - some operations are easier to perform in one representation, while
  - other operations are easier to perform in a different representation.
- A well-known historical case is the use of logarithms in a slide rule.
- Normally, a positive real number x is represented by two points at distance x (or proportional to x).



- In this representation, it is easy to perform additions and subtractions; however:
  - to perform multiplication or division,
  - it is better to represent each number x in a logarithmic scale, as the interval of width ln(x).
- In this case, e.g., multiplication  $a, b \rightarrow a \cdot b$  can be efficiently performed as follow:
  - first, we transform both inputs a and b into the log scale, computing  $a' = \ln(a)$  and  $b' = \ln(b)$ ;
  - then, we add the results a' and b' of this transformation, thus computing c' = a' + b';
  - finally, we apply the inverse transformation to c', i.e., find c for which  $\ln(c) = c'$  (i.e.,  $c = \exp(c')$ ).



• One can easily see that

$$c = \exp(c') = \exp(a' + b') = \exp(a') \cdot \exp(b') = a \cdot b.$$

- So we indeed get the desired product.
- Computing the ratio a/b is similar, the only difference is that:
  - instead of adding a' and b',
  - we compute their difference c' = a' b'.
- Such situations are ubiquitous, let us just name a few cases.
- In fluid mechanics, there are two alternative representations of dynamics:
  - Euler representation and
  - Lagrange representations.

Need for Machine...

Need for A-to-B and . . .

Traditional . . .

What We Need and...

Why It Works

Comment

Our Proposal

What If We Have...
Proposed New...

Home Page

Title Page





Page 4 of 27

Go Back

Full Screen

Full Screen

Close

Quit

- In the Euler representation, we describe how the quantities depend on time and on spatial coordinates.
- In this representation, when a particle moves, its coordinates change.
- In the Lagrange approach, we "tag" the moving particles so that:
  - when a particle moves, its coordinates remain the same,
  - but, e.g., the distance between particles changes.
- In quantum physics, we can have the Schroedinger representation, in which the state of the systems changes.



- We can also use the Heisenberg representation, in which:
  - the state of the particle remains the same, but
  - the operators corresponding to quantities (coordinates or momentum) change.

#### • In optics:

- sometimes it is more convenient to represent light as particles, and
- in other problems, it is more convenient to represent it as a wave.

# • In cartography:

- some ways of representing the Earth surface by a map provide better description of angles,
- others better description of areas, etc.

Need for Machine . . . Traditional . . . What We Need and . . . Our Proposal Why It Works Comment What If We Have... Proposed New . . . Home Page Title Page **>>** Page 6 of 27 Go Back Full Screen Close Quit

- In signal processing, sometimes it is more convenient to describe how the signal changes with time.
- E.g., when we want to compute the largest possible deviation from the ideal signal.
- On the other hand, for filtering (and for data processing in general):
  - it is often more efficient to apply the Fourier transform and thus,
  - use the corresponding frequency representation.



#### 7. Need for Machine Learning

- Sometimes, the transformations are straightforward.
- For example, the transformation between different maps of the same area is described by explicit formulas.
- However, in many practical situations:
  - the exact implementation of the corresponding transformations
  - can be very time consuming.
- A good example of such transformations are transformations between Euler and Lagrange coordinates.
- These transformations require solving a complex system of partial differential equations.



# 8. Need for Machine Learning (cont-d)

- This is especially important for time-critical applications:
  - where we need to finish computations before a deadline,
  - e.g., for predicting tomorrow's weather.
- In such situations, a natural way to drastically decrease computation time is to take into account that:
  - in practice, the values of the quantities come from measurements and
  - are, thus only known with some reasonable accuracy usually, around 1-10%.
- Thus, there is no need to compute the answer with 10 or 13 digits after the period.



# 9. Need for Machine Learning (cont-d)

- It makes sense to replace:
  - the original time-consuming practically exact computations with
  - faster approximate ones, that would provide an answer with the corresponding accuracy.
- An efficient way to come with such an approximation is to use machine learning.
- In this approach:
  - several times, we run the original exact model on different inputs, and then
  - we use the corresponding results to train a machine learning algorithm e.g., a neural network.



# 10. Need for Machine Learning (cont-d)

- This training may take some time.
- However, once we freeze the weights, neural-network computations become very fast.
- This idea has been efficiently applied to many real-life problems.
- It indeed allows us to drastically reduce computation time.



# 11. Traditional Methodology of Using Machine Learning and Its Limitations

- When we have two different representations let us denote them A and B we need both:
  - A-to-B transformations, and
  - B-to-A transformations.
- It is reasonable to replace both transformations by appropriately trained neural networks.
- For this purpose:
  - we start, e.g., with a large number of different states  $a_1, \ldots, a_n$  in the A-representation, and
  - we use the exact A-to-B algorithm to find the corresponding B-states  $b_1, \ldots, b_n$ .

Need for Machine...

Need for A-to-B and . . .

Traditional . . .

What We Need and...

Our Proposal

Why It Works

Comment

What If We Have...

Proposed New...

Home Page

Title Page





Page 12 of 27

Go Back

Full Screen

Close

Quit

# 12. Traditional Methodology (cont-d)

- Then:
  - we train the A-to-B neural network on patterns  $(a_i, b_i)$  with input  $a_i$  and output  $b_i$ , and
  - we train the B-to-A neural network on patterns  $(b_i, a_i)$  with input  $b_i$  and output  $a_i$ .
- A neural network provides only an approximation to the actual transformation.
- It is Ok if we apply the neural network only once.
- In this case:
  - if we can select the approximations to be more accurate that the measurement accuracy,
  - the resulting inaccuracy will be negligible in comparison with the measurement inaccuracy.

Need for Machine . . . Traditional . . . What We Need and . . . Our Proposal Why It Works Comment What If We Have.... Proposed New . . . Home Page Title Page **>>** Page 13 of 27 Go Back Full Screen Close

Quit

# 13. Traditional Methodology (cont-d)

- However, in many data processing algorithm, we need to constantly switch between different representations.
- For example, in signal and image processing, we often have an iterative algorithm that:
  - switches all the time
  - between the time and frequency domains.
- In this case:
  - if we replace each exact transformation with an approximate one,
  - every time we apply a transformation, we add an extra approximation error.
- When we apply A-to-B and B-to-A transformations many time, the resulting errors accumulate.
- So, we may end up with a very inaccurate result.

Need for Machine . . . Traditional . . . What We Need and . . . Our Proposal Why It Works Comment What If We Have... Proposed New . . . Home Page Title Page **>>** Page 14 of 27 Go Back Full Screen Close Quit

#### 14. What We Need and What We Do in This Talk

- It is thus desirable to make sure that the A-to-B and B-to-A transformations are (almost) exactly inverses:
  - if we first apply the A-to-B neural network to some input state a, and
  - apply the B-to-A neural network to the resulting state b,
  - we should get the state a back.
- The need for this inversion is especially important in economic and financial applications.
- In such applications, A-to-B and B-to-A transformations may describe:
  - options from classes A and B
  - that customers perceive as equivalent ones.

Need for Machine . . . Traditional . . . What We Need and . . . Our Proposal Why It Works Comment What If We Have... Proposed New . . . Home Page Title Page **>>** Page 15 of 27 Go Back Full Screen Close Quit

#### 15. What We Do in This Talk (cont-d)

- In this case:
  - if a trader gets a state a' which should be equivalent to a but is actually slightly different,
  - e.g., slightly better than a,
  - we get an undesirable arbitrage phenomenon,
  - when a trader can earn huge amounts of money by exploiting this seemingly minor difference.
- In this talk, we describe:
  - how we can train A-to-B and B-to-A neural networks
  - so that the resulting transformations are (almost) exact inverses.

Need for Machine . . . Traditional . . . What We Need and . . . Our Proposal Why It Works Comment What If We Have... Proposed New . . . Home Page Title Page **>>** Page 16 of 27 Go Back Full Screen Close Quit

#### 16. What We Do in This Talk (cont-d)

- In literature, there is an alternative solution:
  - using *invertible* neural networks,
  - i.e., networks in which each layer can be inverted.
- If this is how we train the A-to-B network, then:
  - by simply inverting each layer,
  - we will indeed get a B-to-A neural network
  - for which the resulting transformations are (almost) exact inverses.
- However, the restriction to invertible neural networks may make the training of a neural network less efficient.
- Indeed, the current successes of neural networks are based on non-invertible neural networks.
- With this in mind, we believe that it is better not to restrict the type of neural networks.

Need for Machine . . . Traditional . . . What We Need and Our Proposal Why It Works Comment What If We Have Proposed New . . . Home Page Title Page **>>** Page 17 of 27 Go Back Full Screen Close Quit

# 17. Our Proposal

- On the first stage of our proposal, we train the A-to-B network the same way as usual. Namely:
  - we start with a large number of different states  $a_1, \ldots, a_n$  in the A-representation,
  - we use the exact A-to-B algorithm to find the corresponding B-states  $b_1, \ldots, b_n$ , and then
  - we train the A-to-B neural network on patterns  $(a_i, b_i)$  with input  $a_i$  and output  $b_i$ .
- On the second stage, we train the B-to-A network.
- The main difference from the usual approach is that, to train this network:
  - in addition to the sample  $(b_i, a_i)$  obtained on the first two sub-stages of the first stage,
  - we also use other patterns.



# 18. Our Proposal (cont-d)

- To be precise, here is what we suggest.
- Once the A-to-B network is trained, we generate more examples of A-states  $a_{n+1}, \ldots, a_N \ (N \gg n)$ .
- To each of these new examples  $a_j$ , we apply the A-to-B network and record the corresponding B-state  $b_i$ .
- The A-to-B network is much faster than the exact A-to-B transformation that we approximating; so:
  - during the same time as the second sub-stage of the first stage,
  - we can process much more examples  $(N \gg n)$ .
- Finally, to train the B-to-A network, we use *both*:
  - the patterns  $(b_i, a_i)$  generated on the first stage and
  - the newly generated patterns  $(b_j, a_j)$ .

Need for A-to-B and . . .

Need for Machine . . .

Traditional . . .

What We Need and . . .
Our Proposal

Why It Works

Comment

What If We Have...

Proposed New...

Home Page





**>>** 



Page 19 of 27

Go Back

Full Screen

Close

Quit

# 19. Why It Works

- In the original method, the A-to-B and B-to-A networks are exact inverses only on n patterns  $(a_i, b_i)$ .
- On all other inputs  $a \neq a_i$ :
  - if we first apply the A-to-B network and then the B-to-A network,
  - we, in general, do not get the same original state back.
- To be more precise, the closer a to one of  $a_i$ , the closer the result of the back-and-forth transformation to a.
- The larger n, the denser are the states  $a_i$  in the class of all possible A-states; thus, in general:
  - the smaller the distance from a to the nearest point  $a_i$ ,
  - the closer the back-and-forth result to the original state a.

Need for Machine . . . Traditional . . . What We Need and . . . Our Proposal Why It Works Comment What If We Have... Proposed New . . . Home Page Title Page **>>** Page 20 of 27 Go Back Full Screen Close Quit

# 20. Why It Works (cont-d)

- In our proposed approach, the A-to-B and B-to-A networks are exact inverses on  $N \gg n$  patterns  $(a_j, b_j)$ .
- Since  $N \gg n$ , the new states  $a_j$  are placed much denser in the class of all possible A-states; thus:
  - the distance from an A-state a to the nearest new state  $a_i$  is much smaller than
  - the distance from a to the nearest original state  $a_i$ .
- So, for the newly trained networks, for a generic A-state a:
  - the result of applying the back-and-forth to a is mich closer to the original state a
  - than for the original neural network.
- This is exactly what we wanted.



#### 21. Comment

- In our description, we started with the A-to-B transformation; alternatively:
  - we could start with the B-to-A transformation and
  - then apply the new idea to the A-to-B transformation.
- We should start with the one which is faster:
  - if, in general, the exact A-to-B transformation is faster, we start with the A-to-B transformation;
  - if the exact B-to-A transformation is faster, we should start with the B-to-A transformation.



- In some practical situations, we have more than two different representations  $A^{(1)}, \ldots, A^{(K)}, K > 2$ .
- In such situations, we need to be able to perform a transformation between each pair.
- So, we need transformations  $A^{(k)} \to A^{(k')}$  for each pair  $k \neq k'$ .
- This is how this problem is solved now.
- We start with a large number of different states  $a_1^{(1)}, \ldots, a_n^{(1)}$ , e.g., in the  $A^{(1)}$ -representation.
- For each of these states  $a_i^{(1)}$  and for each representation k > 1:
  - we use the exact  $A^{(1)}$ -to- $A^{(k)}$  algorithm
  - to find the corresponding  $A^{(k)}$ -states  $a_1^{(k)}, \ldots, a_n^{(k)}$ .

Need for A-to-B and . . .

Need for Machine . . .

Traditional . . .

What We Need and...

Our Proposal

Why It Works

Comment

What If We Have...

Proposed New...

Home Page

Title Page

**4 >>** 





Page 23 of 27

Go Back

Full Screen

Close

Quit

# 23. More Than Two Representations (cont-d)

• Then, for each pair  $k \neq k'$ , we train the  $A^{(k)}$ -to- $A^{(k')}$  neural network on patterns

$$\left(a_i^{(k)}, a_i^{(k')}\right), \quad i = 1, \dots, n.$$

- This process has the same limitation as in the case of two representations (K = 2):
  - if we apply several neural networks and get back to the same representation that we started with,
  - the resulting state may be different.
- How can we make this result closer to the original state?



- Similar to the case K=2, the first stage of the algorithm is similar to what we do in the existing scheme:
- We start with a large number of different states  $a_1^{(1)}, \ldots, a_n^{(1)},$ e.g., in the  $A^{(1)}$ -representation.
- For each of these states  $a_i^{(1)}$  and for each representation k > 1:
  - we use the exact  $A^{(1)}$ -to- $A^{(k)}$  algorithm
  - to find the corresponding  $A^{(k)}$ -states  $a_1^{(k)}, \ldots, a_n^{(k)}$ .
  - Then, for each k > 1, we train the  $A^{(1)}$ -to- $A^{(k)}$  neural network on patterns  $(a_i^{(1)}, a_i^{(k)}), i = 1, \dots, n.$

Need for Machine . . . Traditional . . . What We Need and . . . Our Proposal Why It Works Comment What If We Have... Proposed New . . . Home Page Title Page Page 25 of 27 Go Back Full Screen

**>>** 

Close

Quit

# 25. Proposed New Algorithm: Second Stage

- On the second stage, we do the following:
- We generate more examples of  $A^{(1)}$ -states

$$a_{n+1}^{(1)}, \dots, a_N^{(1)} \ (N \gg n).$$

- To each of these new examples  $a_i^{(1)}$ , for each k > 1:
  - we apply the  $A^{(1)}$ -to- $A^{(k)}$  network and
  - record the corresponding  $A^{(k)}$ -states  $a_i^{(k)}$ .
- Finally, for all k > 1 and  $k' \neq k$ , to train the  $A^{(k)}$ -to- $A^{(k')}$  network, we use both:
  - the patterns  $\left(a_i^{(k)}, a_i^{(k')}\right)$  generated on the first stage and
  - the newly generated patterns  $(a_j^{(k)}, a_j^{(k')})$ .

Need for Machine . . . Traditional . . . What We Need and . . . Our Proposal Why It Works Comment What If We Have... Proposed New . . . Home Page Title Page **>>** Page 26 of 27 Go Back Full Screen

Close

Quit

#### 26. Acknowledgments

This research was supported by:

- the Center of Excellence in Econometrics, Chiang Mai University, Thailand;
- the German Research Foundation (DFG) as a part of the Research Training Group i.c.sens (grant GRK2159),
- the Institutes of Cartography and Geoinformatics and of Geodesy of the Leibniz University of Hannover, and
- the US National Science Foundation grants 1623190 and HRD-1242122.

This paper was written when V. Kreinovich was visiting the Leibniz University of Hannover.

