Why Shapley Value and Its Variants Are Useful in Machine Learning and Other Applications

Laxman Bokati1, Olga Kosheleva2,
Vladik Kreinovich1,3, and Nguyen Ngoc Thach4
1Computational Science Program
Departments of 2Teacher Education and 3Computer Science
University of Texas at El Paso, El Paso, Texas 79968, USA
lbokati@miners.utep.edu, olgak@utep.edu, vladik@utep.edu
4Institute for Research Science and Banking Technology
Banking University Ho Chi Minh City, Vietnam, thachnn@buh.edu.vn
1. Outline

- Shapley value is a useful way to allocate gains in cooperative games.
- It has been very successful in machine learning (and in other applications beyond cooperative games).
- This success is somewhat puzzling:
 - the usual derivation of the Shapley value is based on requirements like additivity
 - these requirements are natural in cooperative games and but not in machine learning.
- In this talk, we provide a new simple derivation of the Shapley value.
- This derivation does not use game-specific requirements like additivity.
- It is, thus, applicable in the machine learning case as well.
2. How to distribute gain between the agents: the problem for which Shapley value was invented

- In a cooperating scenario, we have \(n \) collaborating agents \(1, \ldots, n \).
- We assume that:
 - for each set \(S \subset N \overset{\text{def}}{=} \{1, \ldots, n\} \) of agents,
 - we know the largest gain \(v(S) \) that agents from this set can get with guarantee is they act together.
- The best strategy is for everyone to get together and get the gain \(v(N) \).
- The question is: how to divide this resulting gain \(v(N) \) between the agents?
Let us reformulate this problem in more precise terms

- In mathematical terms, what we need is a function \(\varphi \) that assigns:
 - to each function \(v : 2^N \to \mathbb{R}_0^+ \) from the set \(2^N \) of all subsets of \(N \) to the set \(\mathbb{R}_0^+ \) of all non-negative real numbers,
 - an \(n \)-dimensional vector \((\varphi_1(v), \ldots, \varphi_n(v))\) of non-negative values \(v_i \) for which
 \[
 \varphi_1(v) + \ldots + \varphi_n(v) = v(N).
 \]
4. Natural requirements

- A solution to the above problem was proposed in 1951 by Lloyd S. Shapley.
- Shapley received the 2012 Nobel Prize in Economics for this discovery.
- Shapley considered the following two natural requirements.
5. First requirement: fairness

- Suppose that in some situations, agents i and j contribute equally, i.e., we have $v(S) = v(\pi_{i\leftrightarrow j}(S))$ for all sets S.

- Here, $\pi_{i\leftrightarrow j}$ is a permutation that swaps i and j and leaves all other elements intact.

- Then these two agents should get the exact same amount:

$$\varphi_i(v) = \varphi_j(v).$$
6. Second requirement: additivity

- Suppose that we have two different independent situations with the same set of agents:
 - one situation characterized by a function u, and
 - another situation characterized by a function v.
- Then the overall amount that each agent i gets in both situations is
 $$\varphi_i(u) + \varphi_i(v).$$
- Alternatively, we can consider these two situations as a single situation, with $w(S) = u(S) + v(S)$ for all S.
- It is reasonable to require that:
 - since we did not change anything by simply considering the two situation as one,
 - the overall gain of each player in this new situation should be the same:
 $$\varphi_i(w) = \varphi_i(u + v) = \varphi_i(u) + \varphi_i(v).$$
7. Resulting formula

- Shapley showed that these two requirements uniquely determine the function \(\varphi_i \):

\[
\varphi_i(v) = \sum_{S: i \notin S} \frac{|S|! \cdot (n - |S| - 1)!}{n!} \cdot (v(S \cup \{i\}) - v(S)).
\]

- Here, \(|S|\) denotes the number of elements in the set \(S\).
8. Shapley value is easy to compute

- When \(n \) is small, we can simply use the above formula.
- For large \(n \), we can use the equivalent description of the Shapley value \(\varphi_i(v) \) in terms of permutations \(\pi : N \rightarrow N \) of the set \(N \).
- Namely, each permutation sorts the elements of the set \(N \) as
 \[\pi(1) < \pi(2) < \ldots \]
- We can then add these elements one by one.
- For the case when we add the agent \(i \), we can compute the difference between the new and the previous value of \(v \).
- The expected value of this difference over random permutations is exactly the Shapley value.
9. Shapley value is easy to compute (cont-d)

- It is easy to simulate a random permutation:
 - as $\pi(1)$, we select each of elements 1, \ldots, n with the same probability $1/n$;
 - then, as $\pi(2)$, we select each of the $n-1$ remaining elements with the same probability $1/(n-1)$, etc.

- Thus, by using such Monte-Carlo simulations, we can estimate the Shapley value as accurately as possible.
10. Variants of the Shapley value

- In some applications, it is useful to use variants of the Shapley value, of the type

\[\phi_i(v) = \sum_{S: i \not\in S} a(|S|) \cdot (v(S \cup \{i\}) - v(S)). \]

- Here the function \(a(|S|) \) is such that

\[\sum_{S: i \not\in S} a(|S|) = 1. \]

- This condition is equivalent to

\[\sum_{k=0}^{n-1} \frac{(n - 1)!}{(n - 1 - k)! \cdot k!} \cdot a(k) = 1. \]
11. Successful use of Shapley value in machine learning

- Lately, the Shapley value has been successfully used in machine learning and in other applications.
- It is used to describe the importance of different inputs.
- In this case:
 - instead of agents, we gave inputs, and
 - instead of a gain $v(S)$, we have a different characteristic,
 - e.g., classification efficiency – corresponding to the case when we only use inputs from the set S.
12. This success is somewhat puzzling

- The usual derivation of the Shapley value is based on additivity.
- However, for classification efficiency, adding two efficiencies makes no sense.
- We therefore need a different explanation for the empirical success of Shapley value in these applications.
13. What we do in this talk

- In this talk, we provide a simple alternative derivation of Shapley value and its variants,
- This derivation that does not use additivity.
- It can, therefore, explain the success of Shapley value and its variants in machine learning applications.
14. Main idea

- We want to come up with a value ϕ_i that describes:
 - how much adding an input i improves the desired result,
 - e.g., how much it improves the classification efficiency.

- In other words, we want this value to describe the difference $v(S \cup \{i\}) - v(S)$ between:
 - the result $v(S \cup \{i\})$ obtained by adding i and
 - the result $v(S)$ that we get without adding the input i.

- So, we want to have to make sure that:
 - for each set S that does not contain the input i,
 - this difference is close to the desired value ϕ_i:

$$v(S \cup \{i\}) - v(S) \approx \phi_i.$$
15. From the idea to the exact formulation of the problem

- In mathematical terms, we have several equations for determining a single unknown \(\varphi_i \).
- In other words, we have an over-determined system of linear equations.
- In data processing, a usual way to deal with such systems is to use the Least Squares approach.
- So, we find the value \(\varphi_i \) for which the following sum attains its smallest possible value:

\[
\sum_{S: i \not\in S} \frac{((v(S \cup \{i\}) - v(S)) - \varphi_i)^2}{\sigma^2(S)}
\]

- Here the coefficients \(\sigma^2(S) \) describe the weight that we assign to each equation.
16. Requiring permutation-invariance

- A priori, there is usually no reason to believe that some inputs and more important than others.
- Thus, it makes sense to require:
 - as in the original derivation of the Shapley value,
 - that the weights $\sigma^2(S)$ should not depend on which exactly inputs are included in the set S.
- These weights should be permutation-invariant.
- Thus, they should depend only on the size $|S|$ of the corresponding set S.

17. Requiring permutation-invariance (cont-d)

- So, we must have $\sigma^2(S) = b(|S|)$ for some function
 $$b : \{0, \ldots, n - 1\} \rightarrow \mathbb{R}_0^+.$$

- Thus, we arrive at the need to minimize the following expression:
 $$\sum_{S: i \notin S} \frac{((v(S \cup \{i\}) - v(S)) - \varphi_i)^2}{b(|S|)}.$$
Let us differentiate the above expression and equate the derivative to 0.

Then we get

\[
2 \cdot \sum_{S: \ i \notin S} \frac{\phi_i - (v(S \cup \{i\}) - v(S))}{b(|S|)} = 0
\]

This is equivalent to:

\[
\phi_i \cdot \sum_{S: \ i \notin S} \frac{1}{b(|S|)} = \sum_{S: \ i \notin S} \frac{1}{b(|S|)} \cdot (v(S \cup \{i\}) - v(S)).
\]

Thus, we conclude that

\[
\phi_i = \sum_{S: \ i \notin S} a(|S|) \cdot (v(S \cup \{i\}) - v(S)).
\]
19. Solving the resulting optimization problem (cont-d)

- Here, we denoted

\[
a(k) = \frac{1}{b(k)} \cdot \frac{1}{\sum_{s: i \notin S} b(|S|)}.
\]

- This is exactly the above formula for the variants of Shapley value.

- Vice versa, each variant of the Shapley value corresponding to the values \(a(k)\) can be obtained this way.

- Namely, it is sufficient to take

\[
b(k) = \frac{1}{a(k)}.
\]
20. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and
 - HRD-1834620 and HRD-2034030 (CAHSI Includes).
- It was also supported by the AT&T Fellowship in Information Technology.
- It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.