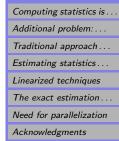
Estimating Risk under Interval Uncertainty: Sequential and Parallel Algorithms

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
vladik@utep.edu

Hung T. Nguyen
Department of Mathematical Sciences
New Mexico State University

Songsak Sriboonchita
Faculty of Economics, Chiang Mai University



1. Computing statistics is important

- *Problem:* estimating the quality of of an individual investment and of the investment portfolio.
- Traditional econometrics approach: use expected return and its risk (variance).
- How to estimate these characteristics:
 - trace the past returns x_1, \ldots, x_n of a given (and/or similar) investment;
 - compute the statistical characteristics based on these returns.
- The expected return: $E = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$.
- The risk: $V = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i E)^2$.

2. Additional problem: interval uncertainty

- The return (per unit investment) is defined as
 - the selling price of the corresponding financial instrument at the end of, e.g., a one-year period,
 - divided by the buying price of this instrument at the beginning of this period.
- It is usually assumed that we know the exact values x_1, \ldots, x_n of the returns.
- In practice, however, both the selling and the buying prices unpredictably fluctuate within a single day.
- These minute-by-minute fluctuations are not always recorded.
- What we usually have recorded is the daily range of prices $[\underline{x}_i, \overline{x}_i]$.

3. Traditional approach to solving the problem of interval uncertainty

- Traditional approach:
 - take the average $\widetilde{x}_i = \frac{\underline{x}_i + \overline{x}_i}{2}$ and
 - compute the characteristics based on these averages.
- Resulting estimate for the expected return:

$$\widetilde{E} = \frac{1}{n} \cdot \sum_{i=1}^{n} \widetilde{x}_i,$$

• Resulting estimate for the risk:

$$\widetilde{V} = \frac{1}{n} \cdot \sum_{i=1}^{n} (\widetilde{x}_i - \widetilde{E})^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (\widetilde{x}_i)^2 - \left(\frac{1}{n} \cdot \sum_{i=1}^{n} \widetilde{x}_i\right)^2.$$

Computing statistics is . . . Additional problem: . . .

Traditional approach . . .

Estimating statistics...

Linearized techniques

The exact estimation . . .

Need for parallelization

Acknowledgments

Title Page

Page 4 of 21

Go Back

Full Screen

Close

4. Traditional approach: limitations

- *In the bull market:*
 - there may be dips leading to a small value of x_i ,
 - but overall, the values are increasing and
 - therefore, \overline{x}_i is a reasonable estimate for x_i , and \widetilde{x}_i underestimates the high price x_i .
- In the bear market:
 - spikes are accidental but lower values are typical,
 - therefore, \underline{x}_i is a reasonable estimate for x_i , and \widetilde{x}_i overestimates the low price x_i .
- So, we underestimate the low prices and underestimate the high prices.
- Thus we underestimate the variance (the measure of price variation).

5. Estimating statistics under interval uncertainty: a computational problem

- Traditional assumption: we know the true values x_1, \ldots, x_n .
- Traditional computations: estimate the value of a statistical characteristic $C(x_1, \ldots, x_n)$.
- Interval uncertainty: we only know the intervals $\mathbf{x}_1 = [\underline{x}_1, \overline{x}_1], \dots, \mathbf{x}_n = [\underline{x}_n, \overline{x}_n]$ that contain x_i .
- Fact: different values $x_i \in \mathbf{x}_i$ lead, in general, to different values of $C(x_1, \ldots, x_n)$.
- Conclusion: we need to estimate the range

$$C(\mathbf{x}_1,\ldots,\mathbf{x}_n) \stackrel{\text{def}}{=} \{C(x_1,\ldots,x_n) \mid x_1 \in \mathbf{x}_1,\ldots,x_n \in \mathbf{x}_n\}.$$

• Computational challenge: modify the existing statistical algorithms so that they compute these ranges.

6. Estimating expected return under interval uncertainty

- Fact: the expected return (arithmetic average) E is a monotonically increasing function of x_1, \ldots, x_n .
- Conclusions:
 - the smallest possible value \underline{E} is attained when each value x_i is the smallest possible $(x_i = x_i)$;
 - the largest possible value is attained when $x_i = \overline{x}_i$ for all i.
- \bullet In other words, the range **E** of E is equal to

$$[E(\underline{x}_1,\ldots,\underline{x}_n),E(\overline{x}_1,\ldots,\overline{x}_n)].$$

• In other words, $\underline{E} = \frac{1}{n} \cdot (\underline{x}_1 + \ldots + \underline{x}_n)$ and $\overline{E} = \frac{1}{n} \cdot (\overline{x}_1 + \ldots + \overline{x}_n)$.

7. Linearized techniques

- *Idea:* when the daily fluctuations are small, we can use the linearization techniques:
 - we represent the values x_i as $x_i = \widetilde{x}_i + \Delta x_i$, where the differences $\Delta x_i \stackrel{\text{def}}{=} x_i \widetilde{x}_i$ are small, and
 - we ignore quadratic terms in the formula for the variance.
- Details: the condition that $x_i \in [\underline{x}_i, \overline{x}_i]$ means that $\Delta x_i \in [-\Delta_i, \Delta_i]$, where $\Delta_i \stackrel{\text{def}}{=} \frac{\overline{x}_i \underline{x}_i}{2}$.
- General case:

$$C(x_1,\ldots,x_n) \approx C(\widetilde{x}_1,\ldots,\widetilde{x}_n) + \sum_{i=1}^n \frac{\partial C}{\partial x_i}(\widetilde{x}_1,\ldots,\widetilde{x}_n) \cdot \Delta x_i.$$

• Case study: the variance $V = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \cdot \sum_{i=1}^{n} x_i\right)^2$.

8. Linearization (cont-d)

- Formula: $V = \widetilde{V} + 2 \sum_{i=1}^{n} (\widetilde{x}_i \widetilde{E}) \cdot \Delta x_i$.
- The expression for V is monotonic in each $\Delta x_i \in [-\Delta_i, \Delta_i]$:
 - it is increasing when $\widetilde{x}_i \geq \widetilde{E}$ and
 - it is decreasing when $\widetilde{x}_i \leq \widetilde{E}$.
- When $\widetilde{x}_i \geq \widetilde{E}$: maximum is attained when $\Delta x_i = \Delta_i$; the corresponding term in V is $(\widetilde{x}_i \widetilde{E}) \cdot \Delta_i$.
- When $\widetilde{x}_i \leq \widetilde{E}$: maximum is attained when $\Delta x_i = -\Delta_i$; the corresponding term in V is $-(\widetilde{x}_i \widetilde{E}) \cdot \Delta_i$.
- General expression: $|\widetilde{x}_i \widetilde{E}| \cdot \Delta_i$.
- Conclusion: the range of V is $[\widetilde{V} 2\Delta, \widetilde{V} + 2\Delta]$, where

$$\Delta \stackrel{\text{def}}{=} \sum_{i=1}^{n} |\widetilde{x}_i - \widetilde{E}| \cdot \Delta_i.$$

Computing statistics is . . Additional problem: . . . Traditional approach . . . Estimating statistics . . . Linearized techniques The exact estimation . . . Need for parallelization Acknowledgments Title Page **>>** 44 Page 9 of 21 Go Back Full Screen

Close

9. Linearization approximation is not always adequate

- In finance, the gain is often obtained by a small (often < 1%) advantage.
- From this viewpoint, it is desirable to have estimates which are as accurate as possible.
- When the situation is stable, the daily fluctuations are low, and quadratic terms can be reasonable ignored.
- However, the whole purpose of estimating risk is to cover situations with high volatility.
- In such situations, the daily fluctuations $\overline{x}_i \underline{x}_i = 2\Delta_i$ can also be sizeable.
- Thus, terms quadratic in Δ_i cannot be ignored if we want accurate estimates.
- In such situations, we need the exact range of the variance (risk) V.

10. The exact estimation of risk under interval uncertainty is, in general, an NP-hard problem

- Computational problem (reminder):
 - given: interval data $x_i \in [\underline{x}_i, \overline{x}_i];$
 - compute: the exact range $\mathbf{V} = [\underline{V}, \overline{V}]$ for the risk (variance) V.
- Fact: this problem is, in general, computationally difficult (NP-hard).
- Specifically:
 - there is a $O(n \cdot \log(n))$ time algorithm for computing \underline{V} , but
 - computing \overline{V} is, in general, NP-hard.

11. Sequential algorithm for computing \overline{V} in the no-proper-subset case

- Good news: in many practical situations, there are efficient algorithms for computing \overline{V} .
- Auxiliary notion: "narrowed" intervals are defined as

$$[x_i^-, x_i^+] \stackrel{\text{def}}{=} \left[\widetilde{x}_i - \frac{\Delta_i}{n}, \widetilde{x}_i + \frac{\Delta_i}{n} \right].$$

• Example when an efficient algorithm exists: when no two are proper subsets of one another, i.e.,

$$[x_i^-, x_i^+] \not\subseteq (x_i^-, x_i^+)$$
 for all i and j .

• In this case: there exists a $O(n \cdot \log(n))$ time algorithm.

12. Algorithm: general structure

1. First, we sort the values \tilde{x}_i into an increasing sequence:

$$\widetilde{x}_1 \leq \widetilde{x}_2 \leq \ldots \leq \widetilde{x}_n$$
.

2. Then, for every k from 0 to n, we compute the value $V^{(k)} = M^{(k)} - (E^{(k)})^2$ of the variance V for

$$x^{(k)} = (\underline{x}_1, \dots, \underline{x}_k, \overline{x}_{k+1}, \dots, \overline{x}_n).$$

3. Finally, we compute \overline{V} as the largest of n+1 values

$$V^{(0)}, \dots, V^{(n)}.$$

13. Algorithm: details of Stage 2

- Main idea: use previous values of $M^{(k)}$ and $E^{(k)}$ to compute the next values $M^{(k+1)}$ and $E^{(k+1)}$.
- First: compute $M^{(0)} = \frac{1}{n} \cdot \sum_{i=1}^{n} (\overline{x}_i)^2$, $E^{(0)} = \frac{1}{n} \cdot \sum_{i=1}^{n} \overline{x}_i$, and

$$V^{(0)} = M^{(0)} - (E^{(0)})^2.$$

• Then: once we know the values $M^{(k)}$ and $E^{(k)}$, we compute

$$M^{(k+1)} = M^{(k)} + \frac{1}{n} \cdot (\underline{x}_{k+1})^2 - \frac{1}{n} \cdot (\overline{x}_{k+1})^2;$$

$$E^{(k+1)} = E^{(k)} + \frac{1}{n} \cdot \underline{x}_{k+1} - \frac{1}{n} \cdot \overline{x}_{k+1}; \text{ and}$$

$$V^{(k+1)} = M^{(k+1)} - (E^{(k+1)})^2.$$

Computing statistics is . . . Additional problem: . . . Traditional approach . . . Estimating statistics . . . Linearized techniques The exact estimation . . . Need for parallelization Acknowledgments Title Page **>>** Page 14 of 21 Go Back Full Screen Close

14. Sequential algorithm: number of computation steps

- Sorting requires $O(n \cdot \log(n))$ steps.
- Computing the initial values $M^{(0)}$, $E^{(0)}$, and $V^{(0)}$ requires linear time O(n).
- For each k = 0, ..., n 1, we need a constant number of steps to compute the next values

$$M^{(k+1)}, E^{(k+1)}, \text{ and } V^{(k+1)}.$$

- Finally, finding the largest of n + 1 values $V^{(k)}$ also requires O(n) steps.
- Thus, overall, we need

$$O(n \cdot \log(n)) + O(n) + O(n) + O(n) = O(n \cdot \log(n))$$
 steps.

15. Comment about the possibility of linear-time algorithms

- In the $O(n \cdot \log(n))$ algorithm, the main computation time is used on *sorting*.
- It is possible to avoid sorting and use instead the known fact that we can compute the *median* in linear time.
- Asymptotically: the linear time algorithm for computing the median is faster than sorting.
- In practice:
 - the median computing algorithm is still rather complex
 - so, for reasonable size n, sorting is faster than computing the median.
- Thus, sorting-based algorithms are actually faster than median-based ones.

16. Need for parallelization

- Traditional algorithms for computing the variance V from the exact values x_1, \ldots, x_n take linear time O(n).
- Interval uncertainty: we need a larger amount of computation time e.g., time $O(n \cdot \log(n))$.
- In financial applications: it is often very important to produce the result as fast as possible.
- One way to speed up computations is to perform these algorithms *in parallel* on several processors.
- Let us we show how the algorithms for estimating variance under interval uncertainty can be parallelized.

17. Possibility of parallelization

- Reminder: for large n,
 - we may want to further speed up computations
 - if we have several processors working in parallel.
- In the general case, all the stages of the above algorithm can be parallelized by known techniques.
- In particular, the computation of $M^{(k)}$, $E^{(k)}$ on Stage 2 is a particular case of a general *prefix-sum* problem:
 - we must compute the values

$$a_1, a_1 * a_2, a_1 * a_2 * a_3, \ldots,$$

- for some associative operation *.
- In our case, * = +.

18. Case of potentially unlimited number of processors

- Case: we have a potentially unlimited number of processors.
- Stage 1: we can sort the values \widetilde{x}_i in time $O(\log(n))$.
- Stage 2: we can compute the values $V^{(k)}$ (i.e., solve the prefix-sum problem) in time $O(\log(n))$.
- Stage 3: we can compute the maximum of $V^{(k)}$ in time $O(\log(n))$.
- As a result: we can compute \overline{V} time

$$O(\log(n)) + O(\log(n)) + O(\log(n)) = O(\log(n)).$$

19. Case when we have p < n processors

• Stage 1: sort n values in time

$$O\left(\frac{n \cdot \log(n)}{p} + \log(n)\right).$$

• Stage 2: compute the values $V^{(k)}$ in time

$$O\left(\frac{n}{p} + \log(p)\right)$$
.

• Stage 3: compute the maximum of $V^{(i)}$ in time

$$O\left(\frac{n}{p} + \log(p)\right).$$

• Overall: we thus need time

$$O\left(\frac{n \cdot \log(n)}{p} + \log(n)\right) + O\left(\frac{n}{p} + \log(p)\right) + O\left(\frac{n}{p} + \log(p)\right) = O\left(\frac{n \cdot \log(n)}{p} + \log(n) + \log(p)\right).$$

Computing statistics is . . .

Additional problem: . . .

Traditional approach...

Estimating statistics...

Linearized techniques

The exact estimation . . .

Need for parallelization

Acknowledgments

Title Page

Page 20 of 21

Go Back

Full Screen

Close

20. Acknowledgments

This work was supported in part:

- by NSF grant HRD-0734825 and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

