If Many Physicists Are Right and No Physical Theory Is Perfect, Then by Using Physical Observations, We Can Feasibly Solve Almost All Instances of Each NP-Complete Problem

Olga Kosheleva¹, Michael Zakharevich², and
Vladik Kreinovich¹

¹University of Texas at El Paso
El Paso, Texas 79968, USA
olgak@utep.edu, vladik@utep.edu

²Aligh Technology Inc., ymzakharevich@yahoo.com

Solving NP-Complete . . . NP-Complete . . . Can Non-Standard . . . No Physical Theory Is . . . What Is a Physical . . . What We Mean by ... Main Result This Result Is the Rest Proof of the Main Result Home Page **>>** Page 1 of 20 Go Back Full Screen Close Quit

1. Outline

- Many real-life problems are, in general, NP-complete.
- Informally speaking, these problems are difficult to solve on computers based on the usual physical techniques.
- A natural question is: can the use of non-standard physics speed up the solution of these problems?
- This question has been analyzed, e.g.:
 - for quantum field theory,
 - for cosmological solutions with wormholes and/or casual anomalies.
- However, many physicists believe that no physical theory is perfect; in this talk, we show that:
 - if such a no-perfect-theory principle is true,
 - then we can feasibly solve almost all instances of each NP-complete problem.

2. Solving NP-Complete Problems Is Important

- In practice, we often need to find a solution that satisfies a given set of constraints.
- At a minimum, we need to check whether such a solution is possible.
- Once we have a candidate, we can feasibly check whether this candidate satisfies all the constraints.
- In theoretical computer science, "feasibly" is usually interpreted as computable in polynomial time.
- The class of all such problems is called NP.
- Example: satisfiability checking whether a formula like $(v_1 \vee \neg v_2 \vee v_3) \& (v_4 \vee \neg v_2 \vee \neg v_5) \& \dots$ can be true.
- Each problem from the class NP can be algorithmically solved by trying all possible candidates.

3. NP-Complete Problems (cont-d)

- For example, we can try all 2^n possible combinations of true-or-false values v_1, \ldots, v_n .
- For medium-size inputs, e.g., for $n \approx 300$, the resulting time 2^n is larger than the lifetime of the Universe.
- So, these exhaustive search algorithms are not practically feasible.
- It is not known whether problems from the class NP can be solved feasibly (i.e., in polynomial time).
- This is the famous open problem $P \stackrel{?}{=} NP$.
- We know that some problems are *NP-complete*: every problem from NP can be reduced to it.
- So, it is very important to be able to efficiently solve even one NP-hard problem.

NP-Complete . . . Can Non-Standard . . . No Physical Theory Is... What Is a Physical . . . What We Mean by . . . Main Result This Result Is the Best . . Proof of the Main Result Home Page Title Page **>>** Page 4 of 20 Go Back Full Screen Close Quit

Solving NP-Complete . . .

4. Can Non-Standard Physics Speed Up the Solution of NP-Complete Problems?

- NP-complete means difficult to solve on computers based on the usual physical techniques.
- A natural question is: can the use of non-standard physics speed up the solution of these problems?
- This question has been analyzed for several specific physical theories, e.g.:
 - for quantum field theory,
 - for cosmological solutions with wormholes and/or casual anomalies.
- So, a scheme based on a theory may not work.

5. No Physical Theory Is Perfect

- If a speed-up is possible within a given theory, is this a satisfactory answer?
- In the history of physics,
 - always new observations appear
 - which are not fully consistent with the original theory.
- For example, Newton's physics was replaced by quantum and relativistic theories.
- Many physicists believe that every physical theory is approximate.
- For each theory T, inevitably new observations will surface which require a modification of T.
- Let us analyze how this idea affects computations.

NP-Complete . . . Can Non-Standard . . . No Physical Theory Is... What Is a Physical . . . What We Mean by . . . Main Result This Result Is the Best . . Proof of the Main Result Home Page Title Page **>>** Page 6 of 20 Go Back Full Screen Close Quit

Solving NP-Complete . . .

6. No Physical Theory Is Perfect: How to Formalize This Idea

- Statement: for every theory, eventually there will be observations which violate this theory.
- To formalize this statement, we need to formalize what are *observations* and what is a *theory*.
- Most sensors already produce *observation* in the computerreadable form, as a sequence of 0s and 1s.
- Let ω_i be the bit result of an experiment whose description is i.
- Thus, all past and future observations form a (potentially) infinite sequence $\omega = \omega_1 \omega_2 \dots$ of 0s and 1s.
- A physical *theory* may be very complex.
- All we care about is which sequences of observations ω are consistent with this theory and which are not.

NP-Complete . . . Can Non-Standard . . . No Physical Theory Is... What Is a Physical . . . What We Mean by . . . Main Result This Result Is the Rest Proof of the Main Result Home Page Title Page **>>** Page 7 of 20 Go Back Full Screen Close Quit

Solving NP-Complete . . .

7. What Is a Physical Theory?

- So, a physical theory T can be defined as the set of all sequences ω which are consistent with this theory.
- A physical theory must have at least one possible sequence of observations: $T \neq \emptyset$.
- ullet A theory must be described by a finite sequence of symbols: the set T must be definable.
- How can we check that an infinite sequence $\omega = \omega_1 \omega_2 \dots$ is consistent with the theory?
- The only way is check that for every n, the sequence $\omega_1 \dots \omega_n$ is consistent with T; so:

$$\forall n \,\exists \omega^{(n)} \in T \,(\omega_1^{(n)} \ldots \omega_n^{(n)} = \omega_1 \ldots \omega_n) \Rightarrow \omega \in T.$$

• In mathematical terms, this means that T is closed in the Baire metric $d(\omega, \omega') \stackrel{\text{def}}{=} 2^{-N(\omega, \omega')}$, where

$$N(\omega, \omega') \stackrel{\text{def}}{=} \max\{k : \omega_1 \dots \omega_k = \omega'_1 \dots \omega'_k\}.$$

NP-Complete...

Can Non-Standard...

Solving NP-Complete . . .

No Physical Theory Is...

What Is a Physical...
What We Mean by...

...

Main Result

This Result Is the Best..

Proof of the Main Result

Home Page

Title Page

Page 8 of 20

Go Back

Full Screen

Close

8. What Is a Physical Theory: Definition

- A theory must predict something new.
- So, for every sequence $\omega_1 \dots \omega_n$ consistent with T, there is a continuation which does not belong to T.
- \bullet In mathematical terms, T is nowhere dense.
- By a physical theory, we mean a non-empty closed nowhere dense definable set T.
- A sequence ω is consistent with the no-perfect-theory principle if it does not belong to any physical theory.
- In precise terms, ω does not belong to the union of all definable closed nowhere dense set.
- There are countably many definable set, so this union is $meager (= Baire first \ category)$.
- \bullet Thus, due to Baire Theorem, such sequences ω exist.

9. How to Represent Instances of an NP-Complete Problem

- For each NP-complete problem \mathcal{P} , its instances are sequences of symbols.
- In the computer, each such sequence is represented as a sequence of 0s and 1s.
- We can append 1 in front and interpret this sequence as a binary code of a natural number i.
- In principle, not all natural numbers i correspond to instances of a problem \mathcal{P} .
- We will denote the set of all natural numbers which correspond to such instances by $S_{\mathcal{P}}$.
- For each $i \in S_{\mathcal{P}}$, we denote the correct answer (true or false) to the *i*-th instance of the problem \mathcal{P} by $s_{\mathcal{P},i}$.

10. What We Mean by Using Physical Observations in Computations

- In addition to performing computations, our computational device can:
 - produce a scheme i for an experiment, and then
 - use the result ω_i of this experiment in future computations.
- In other words, given an integer i, we can produce ω_i .
- In precise terms, the use of physical observations in computations means that use ω as an *oracle*.

11. Main Result

- A ph-algorithm \mathcal{A} is an algorithm that uses an oracle ω consistent with the no-perfect-theory principle.
- The result of applying an algorithm \mathcal{A} using ω to an input i will be denoted by $\mathcal{A}(\omega, i)$.
- We say that a feasible ph-algorithm \mathcal{A} solves almost all instances of an NP-complete problem \mathcal{P} if:

$$\forall \varepsilon_{>0} \, \forall n \, \exists N_{\geq n} \, \left(\frac{\#\{i \leq N : i \in S_{\mathcal{P}} \, \& \, \mathcal{A}(\omega, i) = s_{\mathcal{P}, i}\}}{\#\{i \leq N : i \in S_{\mathcal{P}}\}} > 1 - \varepsilon \right).$$

- Restriction to sufficiently long inputs $N \geq n$ makes sense: for short inputs, we can do exhaustive search.
- Theorem. For every NP-complete problem \mathcal{P} , there is a feasible ph-alg. A solving almost all instances of \mathcal{P} .

12. This Result Is the Best Possible

- Our result is the best possible, in the sense that the use of physical observations cannot solve *all* instances:
- Proposition. If $P \neq NP$, then no feasible ph-algorithm A can solve all instances of P.
- Can we prove the result for all N starting with some N_0 ?
- We say that a feasible ph-algorithm \mathcal{A} δ -solves \mathcal{P} if

$$\exists N_0 \,\forall N \geq N_0 \, \left(\frac{\#\{i \leq N : i \in S_{\mathcal{P}} \,\&\, \mathcal{A}(\omega, i) = s_{\mathcal{P}, i}\}}{\#\{i \leq N : i \in S_{\mathcal{P}}\}} > \delta \right).$$

- Proposition. For every NP-complete problem \mathcal{P} and for every $\delta > 0$:
 - if there exists a feasible ph-algorithm A that δ -solves \mathcal{P} ,
 - then there is a feasible algorithm \mathcal{A}' that also δ -solves \mathcal{P} .

Solving NP-Complete . . . NP-Complete . . . Can Non-Standard . . . No Physical Theory Is... What Is a Physical . . . What We Mean by ... Main Result This Result Is the Best . . Proof of the Main Result Home Page Title Page **>>** Page 13 of 20

Go Back

Full Screen

Close

Proof of the Main Result

- As \mathcal{A} , given an instance i, we simply produce the result ω_i of the *i*-th experiment.
- Let us prove, by contradiction, that for every $\varepsilon > 0$ and for every n, there exists an integer N > n for which $\#\{i < N : i \in S_{\mathcal{P}} \& \omega_i = s_{\mathcal{P}i}\} > (1-\varepsilon) \cdot \#\{i < N : i \in S_{\mathcal{P}}\}.$
- The assumption that this property is not satisfied means that for some $\varepsilon > 0$ and for some integer n, we have

 $\forall N_{\geq n} \# \{ i \leq N : i \in S_{\mathcal{P}} \& \omega_i = s_{\mathcal{P},i} \} \leq (1-\varepsilon) \cdot \# \{ i \leq N : i \in S_{\mathcal{P}} \}.$

• Let
$$T \stackrel{\text{def}}{=} \{x : \#\{i \le N : i \in S_{\mathcal{P}} \& x_i = s_{\mathcal{P},i}\} \le (1 - \varepsilon) \cdot \#\{i \le N : i \in S_{\mathcal{P}}\} \text{ for all } N \ge n\}.$$

• We will prove that this set T is a physical theory (in the sense of the above definition); then $\omega \notin T$.

NP-Complete . . .

Can Non-Standard . . .

What Is a Physical . . .

Solving NP-Complete . . .

No Physical Theory Is...

What We Mean by ...

Main Result

This Result Is the Best . .

Proof of the Main Result

Title Page

44 **>>**

Home Page

Page 14 of 20

Go Back

Full Screen

Close

14. Proof (cont-d)

- Reminder: $T = \{x : \#\{i \le N : i \in S_{\mathcal{P}} \& x_i = s_{\mathcal{P},i}\} \le (1 \varepsilon) \cdot \#\{i \le N : i \in S_{\mathcal{P}}\} \text{ for all } N \ge n\}.$
- By definition, a physical theory is a set which is nonempty, closed, nowhere dense, and definable.
- Non-emptiness is easy: the sequence $x_i = \neg s_{\mathcal{P},i}$ for $i \in S_{\mathcal{P}}$ belongs to T.
- One can prove that T is closed, i.e., if $x^{(m)} \in T$ for which $x^{(m)} \to \omega$, then $x \in T$.
- Nowhere dense means that for every finite sequence $x_1 \dots x_m$, there exists a continuation $x \notin T$.
- Indeed, for extension, we can take $x_i = s_{\mathcal{P},i}$ if $i \in S_{\mathcal{P}}$.
- \bullet Finally, we have an explicit definition of T, so T is definable.

Solving NP-Complete . . . NP-Complete . . . Can Non-Standard . . . No Physical Theory Is... What Is a Physical . . . What We Mean by . . . Main Result This Result Is the Best . . Proof of the Main Result Home Page Title Page **>>** Page 15 of 20 Go Back

Full Screen

Close

• Let us assume that $P \neq NP$; we want to prove that for every feasible ph-algorithm A, it is not possible to have

 $\forall N \, (\#\{i \leq N : i \in S_{\mathcal{P}} \& \mathcal{A}(\omega, i) = s_{\mathcal{P}, i}\} = \#\{i \leq N : i \in S_{\mathcal{P}}\}).$

 \bullet Let us consider, for each feasible ph-algorithm \mathcal{A} ,

$$T(\mathcal{A}) \stackrel{\text{def}}{=} \{x : \#\{i \le N : i \in S_{\mathcal{P}} \& \mathcal{A}(x, i) = s_{\mathcal{P}, i}\} = \#\{i \le N : i \in S_{\mathcal{P}}\} \text{ for all } N\}.$$

- Similarly to the proof of the main result, we can show that this set T(A) is closed and definable.
- To prove that T(A) is nowhere dense, we extend $x_1 \dots x_m$ by 0s; then $x \in T$ would mean P=NP.
- If $T(A) \neq \emptyset$, then T(A) is a theory, so $\omega \notin T(A)$.
- If $T(A) = \emptyset$, this also means that A does not solve all instances of the problem P no matter what ω we use.

Solving NP-Complete . . .
NP-Complete . . .

Can Non-Standard . . .

No Physical Theory Is...

What Is a Physical . . .

What We Mean by ...

Main Result

This Result Is the Best . .

Proof of the Main Result

Home Page

Title Page

Go Back

Full Screen

Close

- Let us assume that no non-oracle feasible algorithm δ -solves the problem \mathcal{P} .
- Let's consider, for each N_0 and feasible ph-alg. \mathcal{A} ,

$$T(\mathcal{A}, N_0) \stackrel{\text{def}}{=} \{x : \#\{i \le N : i \in S_{\mathcal{P}} \& \mathcal{A}(x, i) = s_{\mathcal{P}, i}\} > \delta \cdot \#\{i \le N : i \in S_{\mathcal{P}}\} \text{ for all } N \ge N_0\}.$$

- We want to prove that $\forall N_0 (\omega \notin T(\mathcal{A}, N_0))$.
- Similarly to the proof of the Main Result, we can show that $T(A, N_0)$ is closed and definable.
- To prove that $T(A, N_0)$ is nowhere dense, we extend $x_1 \dots x_m$ by 0s.
- If $T(\mathcal{A}, N_0) \neq \emptyset$, then $T(\mathcal{A}, N_0)$ is a theory hence $\omega \notin T(\mathcal{A}, N_0)$.
- If $T(A, N_0) = \emptyset$, then also $\omega \notin T(A, N_0)$.

NP-Complete...

Can Non-Standard . . .

Solving NP-Complete . . .

No Physical Theory Is...

What Is a Physical... What We Mean by...

Main Result

This Result Is the Best...

Proof of the Main Result

Home Page

Title Page

Page 17 of 20

Go Back

Full Screen

Close

17. Appendix: A Formal Definition of Definable Sets

- Let \mathcal{L} be a theory.
- Let P(x) be a formula from \mathcal{L} for which the set $\{x \mid P(x)\}$ exists.
- We will then call the set $\{x \mid P(x)\}\ \mathcal{L}$ -definable.
- Crudely speaking, a set is \mathcal{L} -definable if we can explicitly define it in \mathcal{L} .
- All usual sets are definable: \mathbb{N} , \mathbb{R} , etc.
- Not every set is \mathcal{L} -definable:
 - every \mathcal{L} -definable set is uniquely determined by a text P(x) in the language of set theory;
 - there are only countably many texts and therefore, there are only countably many \mathcal{L} -definable sets;
 - so, some sets of natural numbers are not definable.

Solving NP-Complete . . . NP-Complete . . . Can Non-Standard . . . No Physical Theory Is... What Is a Physical . . . What We Mean by ... Main Result This Result Is the Best . . Proof of the Main Result Home Page Title Page **>>** Page 18 of 20

Go Back

Full Screen

Close

18. How to Prove Results About Definable Sets

- Our objective is to be able to make mathematical statements about \mathcal{L} -definable sets. Therefore:
 - in addition to the theory \mathcal{L} ,
 - we must have a stronger theory \mathcal{M} in which the class of all \mathcal{L} -definable sets is a countable set.
- For every formula F from the theory \mathcal{L} , we denote its Gödel number by |F|.
- We say that a theory \mathcal{M} is stronger than \mathcal{L} if:
 - $-\mathcal{M}$ contains all formulas, all axioms, and all deduction rules from \mathcal{L} , and
 - \mathcal{M} contains a predicate def(n, x) such that for every formula P(x) from \mathcal{L} with one free variable,

$$\mathcal{M} \vdash \forall y (\operatorname{def}(\lfloor P(x) \rfloor, y) \leftrightarrow P(y)).$$

19. Existence of a Stronger Theory

- \bullet As \mathcal{M} , we take \mathcal{L} plus all above equivalence formulas.
- Is \mathcal{M} consistent?
- Due to compactness, we prove that for any $P_1(x), \ldots, P_m(x)$, \mathcal{L} is consistent with the equivalences corr. to $P_i(x)$.
- Indeed, we can take

$$\operatorname{def}(n,y) \leftrightarrow (n = \lfloor P_1(x) \rfloor \& P_1(y)) \lor \ldots \lor (n = \lfloor P_m(x) \rfloor \& P_m(y)).$$

- This formula is definable in \mathcal{L} and satisfies all m equivalence properties.
- Thus, the existence of a stronger theory is proven.
- The notion of an \mathcal{L} -definable set can be expressed in \mathcal{M} : S is \mathcal{L} -definable iff $\exists n \in \mathbb{N} \ \forall y \ (\text{def}(n, y) \leftrightarrow y \in S)$.
- So, all statements involving definability become statements from the \mathcal{M} itself, not from metalanguage.

Solving NP-Complete...
NP-Complete...
Can Non-Standard...
No Physical Theory Is...
What Is a Physical...
What We Mean by...
Main Result
This Result Is the Best...
Proof of the Main Result

Home Page

Title Page

44

Page 20 of 20

Go Back

Full Screen

Close