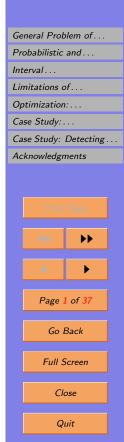
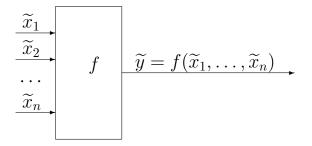
Application-Motivated Combinations of Interval and Probabilistic Approaches, and their Use in Bioinformatics

Vladik Kreinovich
Department of Computer Science,
University of Texas, El Paso, TX 79968, USA
vladik@utep.edu
http://www.cs.utep.edu/vladik
http://www.cs.utep.edu/interval-comp



1. General Problem of Data Processing under Uncertainty

- *Indirect measurements:* way to measure y that are are difficult (or even impossible) to measure directly.
- *Idea*: $y = f(x_1, ..., x_n)$

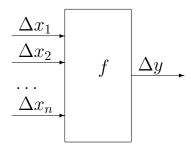


• Problem: measurements are never 100% accurate: $\widetilde{x}_i \neq x_i \ (\Delta x_i \neq 0)$ hence

$$\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) \neq y = f(x_1, \dots, x_n).$$

What are bounds on $\Delta y \stackrel{\text{def}}{=} \widetilde{y} - y$?

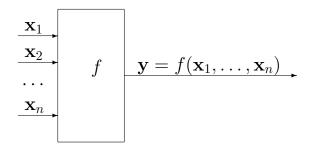
2. Probabilistic and Interval Uncertainty



- Traditional approach: we know probability distribution for Δx_i (usually Gaussian).
- Where it comes from: calibration using standard MI.
- *Problem:* calibration is not possible in:
 - fundamental science
 - manufacturing
- Solution: we know upper bounds Δ_i on $|\Delta x_i|$ hence

$$x_i \in [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i].$$

3. Interval Computations: A Problem



- Given: an algorithm $y = f(x_1, ..., x_n)$ and n intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$.
- Compute: the corresponding range of y: $[y, \overline{y}] = \{ f(x_1, \dots, x_n) \mid x_1 \in [\underline{x}_1, \overline{x}_1], \dots, x_n \in [\underline{x}_n, \overline{x}_n] \}.$
- Fact: NP-hard even for quadratic f.
- Challenge: when are feasible algorithm possible?
- Challenge: when computing $\mathbf{y} = [\underline{y}, \overline{y}]$ is not feasible, find a good approximation $\mathbf{Y} \supseteq \mathbf{y}$.

General Problem of Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting. Acknowledgments Title Page **>>** Page 4 of 37 Go Back Full Screen Close Quit

4. Interval Computations: A Brief History

- Origins: Archimedes (Ancient Greece)
- Modern pioneers: Warmus (Poland), Sunaga (Japan), Moore (USA), 1956–59
- First boom: early 1960s.
- First challenge: taking interval uncertainty into account when planning spaceflights to the Moon.
- Current applications (sample):
 - design of elementary particle colliders: Berz, Kyoko (USA)
 - will a comet hit the Earth: Berz, Moore (USA)
 - robotics: Jaulin (France), Neumaier (Austria)
 - chemical engineering: Stadtherr (USA)

5. Alternative Approach: Maximum Entropy

- Situation: in many practical applications, it is very difficult to come up with the probabilities.
- Traditional engineering approach: use probabilistic techniques.
- *Problem:* many different probability distributions are consistent with the same observations.
- Solution: select one of these distributions e.g., the one with the largest entropy.
- Example single variable: if all we know is that $x \in [\underline{x}, \overline{x}]$, then MaxEnt leads to a uniform distribution.
- Example multiple variables: different variables are independently distributed.

6. Limitations of Maximum Entropy Approach

- Example: simplest algorithm $y = x_1 + \ldots + x_n$.
- Measurement errors: $\Delta x_i \in [-\Delta, \Delta]$.
- Analysis: $\Delta y = \Delta x_1 + \ldots + \Delta x_n$.
- Worst case situation: $\Delta y = n \cdot \Delta$.
- Maximum Entropy approach: due to Central Limit Theorem, Δy is \approx normal, with $\sigma = \Delta \cdot \frac{\sqrt{n}}{\sqrt{3}}$.
- Why this may be inadequate: we get $\Delta \sim \sqrt{n}$, but due to correlation, it is possible that $\Delta = n \cdot \Delta \sim n \gg \sqrt{n}$.
- Conclusion: using a single distribution can be very misleading, especially if we want guaranteed results.
- Examples: high-risk application areas such as space exploration or nuclear engineering.

7. Interval Arithmetic: Foundations of Interval Techniques

• *Problem:* compute the range

$$[\underline{y}, \overline{y}] = \{ f(x_1, \dots, x_n) \mid x_1 \in [\underline{x}_1, \overline{x}_1], \dots, x_n \in [\underline{x}_n, \overline{x}_n] \}.$$

- Interval arithmetic: for arithmetic operations $f(x_1, x_2)$ (and for elementary functions), we have explicit formulas for the range.
- Examples: when $x_1 \in \mathbf{x}_1 = [\underline{x}_1, \overline{x}_1]$ and $x_2 \in \mathbf{x}_2 = [\underline{x}_2, \overline{x}_2]$, then:
 - The range $\mathbf{x}_1 + \mathbf{x}_2$ for $x_1 + x_2$ is $[\underline{x}_1 + \underline{x}_2, \overline{x}_1 + \overline{x}_2]$.
 - The range $\mathbf{x}_1 \mathbf{x}_2$ for $x_1 x_2$ is $[\underline{x}_1 \overline{x}_2, \overline{x}_1 \underline{x}_2]$.
 - The range $\mathbf{x}_1 \cdot \mathbf{x}_2$ for $x_1 \cdot x_2$ is $[y, \overline{y}]$, where

$$\underline{y} = \min(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2);
\overline{y} = \max(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2).$$

• The range $1/\mathbf{x}_1$ for $1/x_1$ is $[1/\overline{x}_1, 1/\underline{x}_1]$ (if $0 \notin \mathbf{x}_1$).

General Problem of Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting . . . Acknowledgments Title Page 44 **>>** Page 8 of 37 Go Back Full Screen Close Quit

8. Straightforward Interval Computations: Example

- Example: $f(x) = (x-2) \cdot (x+2), x \in [1,2].$
- How will the computer compute it?
 - \bullet $r_1 := x 2;$
 - \bullet $r_2 := x + 2;$
 - $\bullet \ r_3 := r_1 \cdot r_2.$
- Main idea: perform the same operations, but with intervals instead of numbers:
 - $\mathbf{r}_1 := [1, 2] [2, 2] = [-1, 0];$
 - $\mathbf{r}_2 := [1, 2] + [2, 2] = [3, 4];$
 - $\mathbf{r}_3 := [-1, 0] \cdot [3, 4] = [-4, 0].$
- Actual range: $f(\mathbf{x}) = [-3, 0]$.
- Comment: this is just a toy example, there are more efficient ways of computing an enclosure $Y \supseteq y$.

9. First Idea: Use of Monotonicity

- Reminder: for arithmetic, we had exact ranges.
- Reason: $+, -, \cdot$ are monotonic in each variable.
- How monotonicity helps: if $f(x_1, ..., x_n)$ is (non-strictly) increasing $(f \uparrow)$ in each x_i , then

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=[f(\underline{x}_1,\ldots,\underline{x}_n),f(\overline{x}_1,\ldots,\overline{x}_n)].$$

- Similarly: if $f \uparrow$ for some x_i and $f \downarrow$ for other x_i (-).
- Fact: $f \uparrow \text{ in } x_i \text{ if } \frac{\partial f}{\partial x_i} \geq 0.$
- Checking monotonicity: check that the range $[\underline{r}_i, \overline{r}_i]$ of $\frac{\partial f}{\partial x_i}$ on \mathbf{x}_i has $\underline{r}_i \geq 0$.
- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating ranges of $\frac{\partial f}{\partial x_i}$: straightforward interval comp.

10. Monotonicity: Example

• *Idea*: if the range $[\underline{r}_i, \overline{r}_i]$ of each $\frac{\partial f}{\partial x_i}$ on \mathbf{x}_i has $\underline{r}_i \geq 0$, then

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=[f(\underline{x}_1,\ldots,\underline{x}_n),f(\overline{x}_1,\ldots,\overline{x}_n)].$$

- Example: $f(x) = (x-2) \cdot (x+2)$, $\mathbf{x} = [1, 2]$.
- Case n = 1: if the range $[\underline{r}, \overline{r}]$ of $\frac{df}{dx}$ on \mathbf{x} has $\underline{r} \geq 0$, then

$$f(\mathbf{x}) = [f(\underline{x}), f(\overline{x})].$$

- $AD: \frac{df}{dx} = 1 \cdot (x+2) + (x-2) \cdot 1 = 2x.$
- Checking: $[\underline{r}, \overline{r}] = [2, 4]$, with $2 \ge 0$.
- Result: f([1,2]) = [f(1), f(2)] = [-3,0].
- Comparison: this is the exact range.

General Problem of . . .
Probabilistic and . . .

Interval . . .

Limitations of . . .

Optimization: . . .

Case Study: . . .

Case Study: Detecting .

Acknowledgments

44

Title Page

>>

Go Back

Full Screen

Close

11. Non-Monotonic Example

- Example: $f(x) = x \cdot (1 x), x \in [0, 1].$
- How will the computer compute it?
 - $\bullet r_1 := 1 x;$
 - \bullet $r_2 := x \cdot r_1$.
- Straightforward interval computations:
 - $\mathbf{r}_1 := [1,1] [0,1] = [0,1];$
 - $\mathbf{r}_2 := [0,1] \cdot [0,1] = [0,1].$
- Actual range: min, max of f at \underline{x} , \overline{x} , or when $\frac{df}{dx} = 0$.
- Here, $\frac{df}{dx} = 1 2x = 0$ for x = 0.5, so
 - compute f(0) = 0, f(0.5) = 0.25, and f(1) = 0.
 - $-\underline{y} = \min(0, 0.25, 0) = 0, \, \overline{y} = \max(0, 0.25, 0) = 0.25.$
- Resulting range: $f(\mathbf{x}) = [0, 0.25]$.

General Problem of...

Probabilistic and...

Interval...

Limitations of...

Optimization: . . .

Case Study: . . .

Case Study: Detecting .

Acknowledgments

Title Page

Page 12 of 37

Go Back

Full Screen

Close

12. Second Idea: Centered Form

• Main idea: Intermediate Value Theorem

$$f(x_1, \dots, x_n) = f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \widetilde{x}_i)$$

for some $\chi_i \in \mathbf{x}_i$.

• Corollary: $f(x_1, \ldots, x_n) \in \mathbf{Y}$, where

$$\mathbf{Y} = \widetilde{y} + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i].$$

- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating the ranges of derivatives:
 - if appropriate, by monotonicity, or
 - by straightforward interval computations, or
 - by centered form (more time but more accurate).

General Problem of . . . Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting. Acknowledgments Title Page **>>** Page 13 of 37 Go Back Full Screen

Close

13. Centered Form: Example

• General formula:

$$\mathbf{Y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i].$$

- Example: $f(x) = x \cdot (1 x), \mathbf{x} = [0, 1].$
- Here, $\mathbf{x} = [\widetilde{x} \Delta, \widetilde{x} + \Delta]$, with $\widetilde{x} = 0.5$ and $\Delta = 0.5$.
- Case n = 1: $\mathbf{Y} = f(\widetilde{x}) + \frac{df}{dx}(\mathbf{x}) \cdot [-\Delta, \Delta]$.
- $AD: \frac{df}{dx} = 1 \cdot (1-x) + x \cdot (-1) = 1-2x.$
- Estimation: we have $\frac{df}{dx}(\mathbf{x}) = 1 2 \cdot [0, 1] = [-1, 1].$
- Result: $\mathbf{Y} = 0.5 \cdot (1 0.5) + [-1, 1] \cdot [-0.5, 0.5] = 0.25 + [-0.5, 0.5] = [-0.25, 0.75].$
- Comparison: actual range [0, 0.25], straightforward [0, 1].

General Problem of...

Probabilistic and . . .

Interval . . .

Limitations of . . .

Optimization: . . .

Case Study: . . .

Case Study: Detecting

Acknowledgments

Title Page

Page 14 of 37

Go Back

Full Screen

Close

14. Third Idea: Bisection

• Known: accuracy $O(\Delta_i^2)$ of first order formula

$$f(x_1, \dots, x_n) = f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \widetilde{x}_i).$$

- *Idea*: if the intervals are too wide, we:
 - split one of them in half $(\Delta_i^2 \to \Delta_i^2/4)$; and
 - take the union of the resulting ranges.
- Example: $f(x) = x \cdot (1 x)$, where $x \in \mathbf{x} = [0, 1]$.
- Split: take $\mathbf{x}' = [0, 0.5]$ and $\mathbf{x}'' = [0.5, 1]$.
- 1st range: $1 2 \cdot \mathbf{x} = 1 2 \cdot [0, 0.5] = [0, 1]$, so $f \uparrow$ and $f(\mathbf{x}') = [f(0), f(0.5)] = [0, 0.25]$.
- 2nd range: $1 2 \cdot \mathbf{x} = 1 2 \cdot [0.5, 1] = [-1, 0]$, so $f \downarrow$ and $f(\mathbf{x''}) = [f(1), f(0.5)] = [0, 0.25]$.
- Result: $f(\mathbf{x}') \cup f(\mathbf{x}'') = [0, 0.25] \text{exact.}$

General Problem of...

Probabilistic and . . .

Limitations of . . .

Interval . . .

Optimization: . . .

Case Study: . . .

Case Study: Detecting . .

Acknowledgments

Title Page

Page 15 of 37

Go Back

Full Screen

Close

Alternative Approach: Affine Arithmetic

- So far: we compute the range of $x \cdot (1-x)$ by multiplying ranges of x and 1-x.
- We ignore: that both factors depend on x and are, thus, dependent.
- *Idea*: for each intermediate result a, keep an explicit dependence on $\Delta x_i = \widetilde{x}_i - x_i$ (at least its linear terms).
- *Implementation:*

$$a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + [\underline{a}, \overline{a}].$$

• We start: with $x_i = \widetilde{x}_i - \Delta x_i$, i.e.,

$$\widetilde{x}_i + 0 \cdot \Delta x_1 + \ldots + 0 \cdot \Delta x_{i-1} + (-1) \cdot \Delta x_i + 0 \cdot \Delta x_{i+1} + \ldots + 0 \cdot \Delta x_n + [0, 0].$$

• Description: $a_0 = \widetilde{x}_i$, $a_i = -1$, $a_j = 0$ for $j \neq i$, and $[a, \overline{a}] = [0, 0].$

General Problem of Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting.

Acknowledgments

44

>>

Page 16 of 37 Go Back

Full Screen

Close

16. Affine Arithmetic: Operations

- Representation: $a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + [\underline{a}, \overline{a}].$
- Input: $a = a_0 + \sum_{i=1}^n a_i \cdot \Delta x_i + \mathbf{a}$ and $b = b_0 + \sum_{i=1}^n b_i \cdot \Delta x_i + \mathbf{b}$.
- Operations: $c = a \otimes b$.
- Addition: $c_0 = a_0 + b_0$, $c_i = a_i + b_i$, $\mathbf{c} = \mathbf{a} + \mathbf{b}$.
- Subtraction: $c_0 = a_0 b_0$, $c_i = a_i b_i$, $\mathbf{c} = \mathbf{a} \mathbf{b}$.
- Multiplication: $c_0 = a_0 \cdot b_0$, $c_i = a_0 \cdot b_i + b_0 \cdot a_i$, $\mathbf{c} = a_0 \cdot \mathbf{b} + b_0 \cdot \mathbf{a} + \sum_{i \neq j} a_i \cdot b_j \cdot [-\Delta_i, \Delta_i] \cdot [-\Delta_j, \Delta_j] +$

$$\sum_{i} a_i \cdot b_i \cdot [-\Delta_i, \Delta_i]^2 +$$

$$\left(\sum_{i} a_{i} \cdot [-\Delta_{i}, \Delta_{i}]\right) \cdot \mathbf{b} + \left(\sum_{i} b_{i} \cdot [-\Delta_{i}, \Delta_{i}]\right) \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b}.$$

General Problem of . . .

Probabilistic and . . .

Interval . . .

Limitations of . . .

Optimization: . . .

Case Study: . . .

Case Study: Detecting

Acknowledgments

Title Page

Page 17 of 37

Go Back

Full Screen

Close

17. Affine Arithmetic: Example

- Example: $f(x) = x \cdot (1 x), x \in [0, 1].$
- Here, n = 1, $\tilde{x} = 0.5$, and $\Delta = 0.5$.
- How will the computer compute it?
 - $\bullet r_1 := 1 x;$
 - \bullet $r_2 := x \cdot r_1$.
- Affine arithmetic: we start with $x = 0.5 \Delta x + [0, 0]$;
 - $\mathbf{r}_1 := 1 (0.5 \Delta) = 0.5 + \Delta x;$
 - $\mathbf{r}_2 := (0.5 \Delta x) \cdot (0.5 + \Delta x)$, i.e.,

$$\mathbf{r}_2 = 0.25 + 0 \cdot \Delta x - [-\Delta, \Delta]^2 = 0.25 + [-\Delta^2, 0].$$

- Resulting range: $\mathbf{y} = 0.25 + [-0.25, 0] = [0, 0.25].$
- Comparison: this is the exact range.

18. Affine Arithmetic: Towards More Accurate Estimates

- In our simple example: we got the exact range.
- In general: range estimation is NP-hard.
- Meaning: a feasible (polynomial-time) algorithm will sometimes lead to excess width: $\mathbf{Y} \supset \mathbf{y}$.
- Conclusion: affine arithmetic may lead to excess width.
- Question: how to get more accurate estimates?
- First idea: bisection.
- Second idea (Taylor arithmetic):
 - affine arithmetic: $a = a_0 + \sum a_i \cdot \Delta x_i + \mathbf{a}$;
 - meaning: we keep linear terms in Δx_i ;
 - *idea:* keep, e.g., quadratic terms

$$a = a_0 + \sum a_i \cdot \Delta x_i + \sum a_{ij} \cdot \Delta x_i \cdot \Delta x_j + \mathbf{a}.$$

19. Interval Computations vs. Affine Arithmetic: Comparative Analysis

- Objective: we want a method that computes a reasonable estimate for the range in reasonable time.
- Conclusion how to compare different methods:
 - how accurate are the estimates, and
 - how fast we can compute them.
- Accuracy: affine arithmetic leads to more accurate ranges.
- Computation time:
 - Interval arithmetic: for each intermediate result a, we compute two values: endpoints \underline{a} and \overline{a} of $[\underline{a}, \overline{a}]$.
 - Affine arithmetic: for each a, we compute n+3 values:

$$a_0 \quad a_1, \ldots, a_n \quad \underline{a}, \overline{a}.$$

• Conclusion: affine arithmetic is $\sim n$ times slower.

20. Solving Systems of Equations: Extending Known Algorithms to Situations with Interval Uncertainty

- We have: a system of equations $g_i(y_1, ..., y_n) = a_i$ with unknowns y_i ;
- We know: a_i with interval uncertainty: $a_i \in [\underline{a}_i, \overline{a}_i]$;
- We want: to find the corresponding ranges of y_i .
- First case: for exactly known a_i , we have an algorithm $y_j = f_j(a_1, \ldots, a_n)$ for solving the system.
- Example: system of linear equations.
- Solution: apply interval computations techniques to find the range $f_i([\underline{a}_1, \overline{a}_1], \dots, [\underline{a}_n, \overline{a}_n])$.
- Better solution: for specific equations, we often already know which ideas work best.
- Example: linear equations Ay = b; y is monotonic in b.

21. Solving Systems of Equations When No Algorithm Is Known

- *Idea*:
 - parse each equation into elementary constraints,
 and
 - use interval computations to improve original ranges until we get a narrow range (= solution).
- First example: $x x^2 = 0.5$, $x \in [0, 1]$ (no solution).
- Parsing: $r_1 = x^2$, 0.5 (= r_2) = $x r_1$.
- Rules: from $r_1 = x^2$, we extract two rules:

(1)
$$x \to r_1 = x^2$$
; (2) $r_1 \to x = \sqrt{r_1}$;

from $0.5 = x - r_1$, we extract two more rules:

(3)
$$x \to r_1 = x - 0.5$$
; (4) $r_1 \to x = r_1 + 0.5$.

General Problem of Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting . . Acknowledgments Title Page 44 **>>** Page 22 of 37 Go Back Full Screen Close

22. Solving Systems of Equations When No Algorithm Is Known: Example

- (1) $r = x^2$; (2) $x = \sqrt{r}$; (3) r = x 0.5; (4) x = r + 0.5.
- We start with: $\mathbf{x} = [0, 1], \mathbf{r} = (-\infty, \infty).$
- (1) $\mathbf{r} = [0, 1]^2 = [0, 1]$, so $\mathbf{r}_{new} = (-\infty, \infty) \cap [0, 1] = [0, 1]$.
- (2) $\mathbf{x}_{\text{new}} = \sqrt{[0,1]} \cap [0,1] = [0,1]$ no change.
- (3) $\mathbf{r}_{\text{new}} = ([0, 1] 0.5) \cap [0, 1] = [-0.5, 0.5] \cap [0, 1] = [0, 0.5].$
- (4) $\mathbf{x}_{\text{new}} = ([0, 0.5] + 0.5) \cap [0, 1] = [0.5, 1] \cap [0, 1] = [0.5, 1].$
- (1) $\mathbf{r}_{\text{new}} = [0.5, 1]^2 \cap [0, 0.5] = [0.25, 0.5].$
- (2) $\mathbf{x}_{\text{new}} = \sqrt{[0.25, 0.5]} \cap [0.5, 1] = [0.5, 0.71];$ round \underline{a} down \downarrow and \overline{a} up \uparrow , to guarantee enclosure.
- (3) $\mathbf{r}_{new} = ([0.5, 0.71] 0.5) \cap [0.25, 5] = [0.0.21] \cap [0.25, 0.5],$ i.e., $\mathbf{r}_{new} = \emptyset$.
 - Conclusion: the original equation has no solutions.

General Problem of Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting. Acknowledgments Title Page **>>** 44 Page 23 of 37 Go Back Full Screen

Close

23. Solving Systems of Equations: Second Example

- Example: $x x^2 = 0, x \in [0, 1]$.
- Parsing: $r_1 = x^2$, $0 = r_2 = x r_1$.
- Rules: (1) $r = x^2$; (2) $x = \sqrt{r}$; (3) r = x; (4) x = r.
- We start with: $\mathbf{x} = [0, 1], \mathbf{r} = (-\infty, \infty).$
- Problem: after Rule 1, we're stuck with $\mathbf{x} = \mathbf{r} = [0, 1]$.
- Solution: bisect $\mathbf{x} = [0, 1]$ into [0, 0.5] and [0.5, 1].
- For 1st subinterval:
 - Rule 1 leads to $\mathbf{r}_{new} = [0, 0.5]^2 \cap [0, 0.5] = [0, 0.25];$
 - Rule 4 leads to $\mathbf{x}_{new} = [0, 0.25];$
 - Rule 1 leads to $\mathbf{r}_{\text{new}} = [0, 0.25]^2 = [0, 0.0625];$
 - Rule 4 leads to $\mathbf{x}_{new} = [0, 0.0625]$; etc.
 - we converge to x = 0.
- For 2nd subinterval: we converge to x = 1.

Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting. Acknowledgments Title Page **>>** 44 Page 24 of 37 Go Back Full Screen Close Quit

General Problem of

24. Optimization: Extending Known Algorithms to Situations with Interval Uncertainty

• *Problem:* find y_1, \ldots, y_m for which

$$g(y_1,\ldots,y_m,a_1,\ldots,a_m)\to \max.$$

- We know: a_i with interval uncertainty: $a_i \in [\underline{a}_i, \overline{a}_i]$;
- We want: to find the corresponding ranges of y_i .
- First case: for exactly known a_i , we have an algorithm $y_j = f_j(a_1, \ldots, a_n)$ for solving the optimization problem.
- Example: quadratic objective function g.
- Solution: apply interval computations techniques to find the range $f_j([\underline{a}_1, \overline{a}_1], \dots, [\underline{a}_n, \overline{a}_n])$.
- Better solution: for specific f, we often already know which ideas work best.

25. Optimization When No Algorithm Is Known

- Idea: divide the original box **x** into subboxes **b**.
- If $\max_{x \in \mathbf{b}} g(x) < g(x')$ for a known x', dismiss \mathbf{b} .
- Example: $g(x) = x \cdot (1 x), \mathbf{x} = [0, 1].$
- Divide into 10 (?) subboxes $\mathbf{b} = [0, 0.1], [0.1, 0.2], \dots$
- Find g(b) for each **b**; the largest is $0.45 \cdot 0.55 = 0.2475$.
- Compute $G(\mathbf{b}) = g(\widetilde{b}) + (1 2 \cdot \mathbf{b}) \cdot [-\Delta, \Delta].$
- Dismiss subboxes for which $\overline{Y} < 0.2475$.
- Example: for [0.2, 0.3], we have $0.25 \cdot (1 0.25) + (1 2 \cdot [0.2, 0.3]) \cdot [-0.05, 0.05]$.
- Here $\overline{Y} = 0.2175 < 0.2475$, so we dismiss [0.2, 0.3].
- Result: keep only boxes $\subseteq [0.3, 0.7]$.
- Further subdivision: get us closer and closer to x = 0.5.

Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting. Acknowledgments Title Page 44 **>>** Page 26 of 37 Go Back Full Screen Close Quit

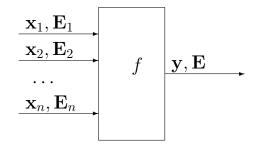
General Problem of . . .

26. Combining Interval and Probabilistic Uncertainty: General Case

- *Problem:* there are many ways to represent a probability distribution.
- *Idea:* look for an objective.
- Objective: make decisions $E_x[u(x,a)] \to \max_a$.
- Case 1: smooth u(x).
- Analysis: we have $u(x) = u(x_0) + (x x_0) \cdot u'(x_0) + \dots$
- Conclusion: we must know moments to estimate E[u].
- Case of uncertainty: interval bounds on moments.
- Case 2: threshold-type u(x).
- Conclusion: we need cdf $F(x) = \text{Prob}(\xi \leq x)$.
- Case of uncertainty: p-box $[\underline{F}(x), \overline{F}(x)]$.

27. Extension of Interval Arithmetic to Probabilistic Case: Successes

- General solution: parse to elementary operations +, -, \cdot , 1/x, max, min.
- Explicit formulas for arithmetic operations known for intervals, for p-boxes $\mathbf{F}(x) = [\underline{F}(x), \overline{F}(x)]$, for intervals + 1st moments $E_i \stackrel{\text{def}}{=} E[x_i]$:



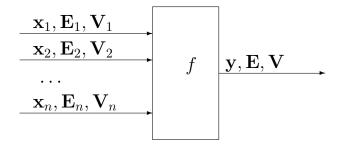
28. Successes (cont-d)

- Easy cases: +, -, product of independent x_i .
- Example of a non-trivial case: multiplication $y = x_1 \cdot x_2$, when we have no information about the correlation:
 - $\underline{E} = \max(p_1 + p_2 1, 0) \cdot \overline{x}_1 \cdot \overline{x}_2 + \min(p_1, 1 p_2) \cdot \overline{x}_1 \cdot \underline{x}_2 + \min(1 p_1, p_2) \cdot \underline{x}_1 \cdot \overline{x}_2 + \max(1 p_1 p_2, 0) \cdot \underline{x}_1 \cdot \underline{x}_2;$
 - $\overline{E} = \min(p_1, p_2) \cdot \overline{x}_1 \cdot \overline{x}_2 + \max(p_1 p_2, 0) \cdot \overline{x}_1 \cdot \underline{x}_2 + \max(p_2 p_1, 0) \cdot \underline{x}_1 \cdot \overline{x}_2 + \min(1 p_1, 1 p_2) \cdot \underline{x}_1 \cdot \underline{x}_2,$

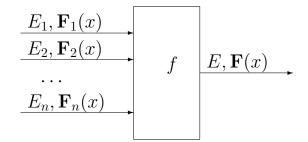
where $p_i \stackrel{\text{def}}{=} (E_i - \underline{x}_i)/(\overline{x}_i - \underline{x}_i)$.

29. Challenges

• intervals + 2nd moments:



 \bullet moments + p-boxes; e.g.:



30. Case Study: Bioinformatics

- Practical problem: find genetic difference between cancer cells and healthy cells.
- *Ideal case:* we directly measure concentration c of the gene in cancer cells and h in healthy cells.
- In reality: difficult to separate.
- Solution: we measure $y_i \approx x_i \cdot c + (1 x_i) \cdot h$, where x_i is the percentage of cancer cells in *i*-th sample.
- Equivalent form: $a \cdot x_i + h \approx y_i$, where $a \stackrel{\text{def}}{=} c h$.

31. Case Study: Bioinformatics (cont-d)

• If we know x_i exactly: Least Squares Method

$$\sum_{i=1}^{n} (a \cdot x_i + h - y_i)^2 \to \min_{a,h}, \text{ hence } a = \frac{C(x,y)}{V(x)} \text{ and }$$

$$h = E(y) - a \cdot E(x)$$
, where $E(x) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$,

$$V(x) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - E(x))^2,$$

$$C(x,y) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - E(x)) \cdot (y_i - E(y)).$$

- Interval uncertainty: experts manually count x_i , and only provide interval bounds \mathbf{x}_i , e.g., $x_i \in [0.7, 0.8]$.
- Problem: find the range of a and h corresponding to all possible values $x_i \in [x_i, \overline{x}_i]$.

General Problem of . . .

Probabilistic and . . .

Interval . . .

Limitations of . . .

Optimization: . . .

Case Study: . . .

Case Study: Detecting . .

Acknowledgments

Title Page

Page 32 of 37

Go Back

Full Screen

Close

32. General Problem

- General problem:
 - we know intervals $\mathbf{x}_1 = [\underline{x}_1, \overline{x}_1], \ldots, \mathbf{x}_n = [\underline{x}_n, \overline{x}_n],$
 - compute the range of $E(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$, population

variance
$$V = \frac{1}{n} \sum_{i=1}^{n} (x_i - E(x))^2$$
, etc.

- Difficulty: NP-hard even for variance.
- *Known:*
 - efficient algorithms for \underline{V} ,
 - efficient algorithms for \overline{V} and C(x, y) for reasonable situations.
- Bioinformatics case: find intervals for C(x, y) and for V(x) and divide.

General Problem of . . . Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting . . Acknowledgments Title Page 44 **>>** Page 33 of 37 Go Back Full Screen Close Quit

33. Case Study: Detecting Outliers

- In many application areas, it is important to detect outliers, i.e., unusual, abnormal values.
- In *medicine*, unusual values may indicate disease.
- In *geophysics*, abnormal values may indicate a mineral deposit (or an erroneous measurement result).
- In *structural integrity* testing, abnormal values may indicate faults in a structure.
- Traditional engineering approach: a new measurement result x is classified as an outlier if $x \notin [L, U]$, where

$$L \stackrel{\text{def}}{=} E - k_0 \cdot \sigma, \quad U \stackrel{\text{def}}{=} E + k_0 \cdot \sigma,$$

and $k_0 > 1$ is pre-selected.

• Comment: most frequently, $k_0 = 2, 3, \text{ or } 6.$

34. Outlier Detection Under Interval Uncertainty: A Problem

- In some practical situations, we only have intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i].$
- Different $x_i \in \mathbf{x}_i$ lead to different intervals [L, U].
- A possible outlier: outside some k_0 -sigma interval.
- Example: structural integrity not to miss a fault.
- A guaranteed outlier: outside all k_0 -sigma intervals.
- Example: before a surgery, we want to make sure that there is a micro-calcification.
- A value x is a possible outlier if $x \notin [\overline{L}, \underline{U}]$.
- A value x is a guaranteed outlier if $x \notin [\underline{L}, \overline{U}]$.
- Conclusion: to detect outliers, we must know the ranges of $L = E k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.

35. Outlier Detection Under Interval Uncertainty: A Solution

- We need: to detect outliers, we must compute the ranges of $L = E k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.
- We know: how to compute the ranges **E** and $[\underline{\sigma}, \overline{\sigma}]$ for E and σ .
- Possibility: use interval computations to conclude that $L \in \mathbf{E} k_0 \cdot [\sigma, \overline{\sigma}]$ and $L \in \mathbf{E} + k_0 \cdot [\sigma, \overline{\sigma}]$.
- Problem: the resulting intervals for L and U are wider than the actual ranges.
- Reason: E and σ use the same inputs x_1, \ldots, x_n and are hence not independent from each other.
- Practical consequence: we miss some outliers.
- Desirable: compute exact ranges for L and U.
- Application: detecting outliers in gravity measurements.

General Problem of Probabilistic and . . . Interval . . . Limitations of . . . Optimization: . . . Case Study: . . . Case Study: Detecting . . Acknowledgments Title Page 44 **>>** Page 36 of 37 Go Back Full Screen Close Quit

36. Acknowledgments

This work was supported in part by:

- by National Science Foundation grants HRD-0734825 and DUE-0926721,
- by Grant 1 T36 GM078000-01 from the National Institutes of Health, and
- by Grant 5015 from the Science and Technology Centre in Ukraine (STCU), funded by European Union.

