Polynomial (Berwald-Moor) Finsler Metrics and Related Partial Orders Beyond Space-Time: Towards Applications to Logic and Decision Making

Olga Kosheleva and Vladik Kreinovich University of Texas at El Paso El Paso, Texas 79968, USA emails olgak@utep.edu, vladik@utep.edu

Introduction: Main... Symmetry of . . . Towards a General A New Model: . . . Computational . . . Euclidean Space: Proof From Euclidean to . . . From Minkowski to Discussion Towards Analyzing . . . Page 1 of 25 Go Back Full Screen Close Quit

1. Objective of Science and Engineering

- One of the main objectives: help people select decisions which are the most beneficial to them.
- To make these decisions,
 - we must know people's *preferences*,
 - we must have the information about different *events*
 - possible consequences of different decisions, and
 - we must also have information about the degree of certainty
 - * (since information is never absolutely accurate and precise).

2. Partial Orders Naturally Appear in Many Application Areas

- Reminder: we need info re preferences, events, and degrees of certainty.
- All these types of information naturally lead to partial orders:
 - For preferences, a < b means that b is preferable to a.
 - * This relation is used in decision theory.
 - For events, a < b means that a can influence b.
 - \ast This causality relation is used in *space-time physics*.
 - For degrees of certainty, a < b means that a is less certain than b.
 - * This relation is used in logics describing uncertainty such as *fuzzy logic*.

3. Numerical Characteristics Related to Partial Orders

- + An order is a natural way of describing a relation.
- Orders are difficult to process, since most data processing algorithms process *numbers*.
- Natural idea: use numerical characteristics to describe the orders.
- Fact: this idea is used in all three application areas:
 - in decision making, *utility* describes preferences:

$$a < b$$
 if and only if $u(a) < u(b)$;

- in space-time physics, *metric* (and time coordinates) describes causality relation;
- in logic and soft constraints, numbers from the interval [0, 1] are used to describe degrees of certainty.

4. Need to Combine Numerical Characteristics: Emergence of Polynomial Aggregation Formulas

- In decision making, we need to combine utilities u_1 , ..., u_n of different participants.
 - Nobelist Josh Nash showed that reasonable conditions lead to $u = u_1 \cdot \ldots \cdot u_n$.
- In space-time geometry, we need to combine coordinates x_i into a metric.
 - Reasonable conditions lead to polynomial metrics $s^{2} = c^{2} \cdot (x_{0} x'_{0})^{2} (x_{1} x'_{1})^{2} (x_{2} x'_{2})^{2} (x_{3} x'_{3})^{2};$ $s^{4} = (x_{1} x'_{1}) \cdot (x_{2} x'_{2}) \cdot (x_{3} x'_{3}) \cdot (x_{4} x'_{4}).$
- In fuzzy logic, we must combine degrees of certainty d_i in A_i into a degree d for $A_1 \& A_2$.
 - Reasonable conditions lead to polynomial functions like $d = d_1 \cdot d_2$.

5. Mathematical Observation: Polynomial Formulas Are Tensor-Related

• Fact: in many areas, we have a general polynomial dependence

$$f(x_1, \dots, x_n) = f_0 +$$

$$\sum_{i=1}^n f_i \cdot x_i +$$

$$\sum_{i=1}^n \sum_{j=1}^n f_{ij} \cdot x_i \cdot x_j +$$

$$\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n f_{ijk} \cdot x_i \cdot x_j \cdot x_k +$$

• In mathematical terms: to describe this dependence, we need a finite set of tensors $f_0, f_i, f_{ij}, f_{ijk}, \ldots$

6. Towards a General Justification of Polynomial Formulas

- Fact: similar polynomials appear in different application areas.
- Reasonable conclusion: there must be a common reason behind them.
- What we do: we provide such a general reason.

7. Class of Functions

- Objective: find a finite-parametric class F of analytical functions $f(x_1, \ldots, x_n)$.
- Meaning: $f(x_1, ..., x_n)$ approximate the actual complex aggregation function.
- Reasonable requirement: this class F is invariant with respect to addition and multiplication by a constant.
- ullet Conclusion: the class F is a (finite-dimensional) linear space of functions.
- *Meaning:* invariance w.r.t. multiplication by a constant corresponds to the choice of a measuring unit.
- If we replace the original measuring unit by a one which is λ times smaller, then all the numerical values $\cdot \lambda$:

 $f(x_1,\ldots,x_n)$ is replaced with $\lambda \cdot f(x_1,\ldots,x_n)$.

8. Similar Scale-Invariance for the Inputs x_i

- Similarly: in all three areas, the numerical values x_i are defined modulo the choice of a measuring unit.
 - If we replace the original measuring unit by a one which is λ times smaller,
 - then all the numerical values get multiplied by this factor λ :

 x_i is replaced with $\lambda \cdot x_i$.

- Conclusion: it is reasonable to require that the finitedimensional linear space F be invariant with respect to such re-scalings:
 - $if f(x_1, \dots, x_n) \in F,$
 - then for every $\lambda > 0$, the function

$$f_{\lambda}(x_1,\ldots,x_n) \stackrel{\text{def}}{=} f(\lambda \cdot x_1,\ldots,\lambda \cdot x_n)$$

also belongs to the family F.

9. Definition and the Main Result

Definition. Let n be an arbitrary integer. We say that a finite-dimensional linear space F of analytical functions of n variables is scale-invariant if for every $f \in F$ and for every $\lambda > 0$, the function

$$f_{\lambda}(x_1,\ldots,x_n) \stackrel{\text{def}}{=} f(\lambda \cdot x_1,\ldots,\lambda \cdot x_n)$$

also belongs to the family F.

Main result. For every scale-invariant finite-dimensional linear space F of analytical functions, every element $f \in F$ is a polynomial.

10. Proof (Part 1)

- ullet Let F be a scale-invariant finite-dimensional linear space F of analytical functions.
- Let $f(x_1, \ldots, x_n)$ be a function from this family F.
- By definition, an analytical function $f(x_1, ..., x_n)$ is an infinite series consisting of monomials $m(x_1, ..., x_n)$:

$$m(x_1,\ldots,x_n)=a_{i_1\ldots i_n}\cdot x_1^{i_1}\cdot\ldots\cdot x_n^{i_n}.$$

- For each such term, by its *total order*, we will understand the sum $i_1 + \ldots + i_n$.
 - if we multiply each input of this monomial by λ ,
 - then the value of the monomial is multiplied by λ^k :

$$m(\lambda \cdot x_1, \dots \lambda \cdot x_n) = a_{i_1 \dots i_n} \cdot (\lambda \cdot x_1)^{i_1} \cdot \dots \cdot (\lambda \cdot x_n)^{i_n} = \lambda^{i_1 + \dots + i_n} \cdot a_{i_1 \dots i_n} \cdot x_1^{i_1} \cdot \dots \cdot x_n^{i_n} = \lambda^k \cdot m(x_1, \dots, x_n).$$

11. **Proof (Part 2)**

• Reminder: $f(x_1, \ldots, x_n)$ is a sum of monomials

$$m(x_1,\ldots,x_n)=a_{i_1\ldots i_n}\cdot x_1^{i_1}\cdot\ldots\cdot x_n^{i_n}.$$

- For each monomial, by its order, we will understand the sum $k = i_1 + \ldots + i_n$.
- For each order k, there are finitely many possible combinations of integers i_1, \ldots, i_n for which $i_1 + \ldots + i_n = k$.
- So, there are finitely many possible monomials of the order k.
- Let $P_k(x_1, ..., x_n)$ denote the sum of all the monomials of order k in the expansion of $f(x_1, ..., x_n)$.
- Then, we have

$$f(x_1,\ldots,x_n) = P_0 + P_1(x_1,\ldots,x_n) + P_2(x_1,x_2,\ldots,x_n) + \ldots$$

Introduction: Main...

Symmetry of...

Towards a General...

A New Model: . . .

Computational . . .

Computational . . .

Euclidean Space: Proof
From Euclidean to...

From Minkowski to . . .

Discussion

Towards Analyzing...

Title Page

Page 12 of 25

Go Back

Full Screen

Close

- $f(x) = P_0 + P_1(x_1, \dots, x_n) + P_2(x_1, \dots, x_n) + \dots$, where $P_k(x_1,\ldots,x_n)$ is the sum of monomials of order k.
- Some of the sums P_k may be zeros if the expansion of f has no monomials of the corresponding order.
- Let k_0 be the first index for which the term $P_{k_0}(x_1,\ldots,x_n)$ is not identically 0. Then,

$$f(x_1,\ldots,x_n) = P_{k_0}(x_1,\ldots,x_n) + P_{k_0+1}(x_1,\ldots,x_n) + \ldots$$

• Since the family F is scale-invariant, it also contains

$$f_{\lambda}(x_1,\ldots,x_n)=f(\lambda\cdot x_1,\ldots,\lambda\cdot x_n).$$

- At this re-scaling, each term P_k is multiplied by λ^k .
- Thus, we get

$$f_{\lambda}(x) = \lambda^{k_0} \cdot P_{k_0}(x_1, \dots, x_n) + \lambda^{k_0+1} \cdot P_{k_0+1}(x_1, \dots, x_n) + \dots$$

Introduction: Main . . .

Symmetry of . . .

Towards a General . . . A New Model: . . .

Computational . . .

Euclidean Space: Proof

From Euclidean to . . .

Discussion

Towards Analyzing . . .

From Minkowski to . . .

Page 13 of 25

Go Back

Full Screen

Close

13. **Proof (Part 4)**

- Proven: $f_{\lambda}(x) = \lambda^{k_0} \cdot P_{k_0}(x) + \lambda^{k_0+1} \cdot P_{k_0+1}(x) + \ldots \in F$.
- Since F is a linear space, it also contains a function $\lambda^{-k_0} \cdot f_{\lambda}(x) = P_{k_0}(x) + \lambda \cdot P_{k_0+1}(x) + \dots$

- In the limit $\lambda \to 0$, we conclude that the term $P_{k_0}(x)$ also belongs to the family $F: P_{k_0}(x) \in F$.
- Since F is a linear space, this means that the difference $f(x) P_{k_0}(x) = P_{k_0+1}(x) + P_{k_0+2}(x) + \ldots \in F.$
- Let k_1 be the first index $k_1 > k_0$ for which the term $P_{k_1}(x)$ is not identically 0.
- Then we can similarly conclude that the term $P_{k_1}(x)$ also belongs to the family F, etc.

Symmetry of . . . Towards a General . . . A New Model: . . . Computational . . . Euclidean Space: Proof From Euclidean to . . . From Minkowski to . . . Discussion Towards Analyzing . . . Title Page 44 Page 14 of 25 Go Back Full Screen Close Quit

Introduction: Main...

14. Proof (Conclusion)

- We can therefore conclude that:
 - for every index k for which $P_k(x) \not\equiv 0$,
 - this term $P_k(x)$ also belongs to the family F.
- Fact: monomials of different total order are linearly independent:
 - if there were infinitely many non-zero terms P_k in the expansion of the function f(x),
 - we would have infinitely many linearly independent function in the family F
 - which contradicts to our assumption that the family F is a finite-dimensional linear space.
- So, there are only finitely many non-zero P_k .
- Hence, f(x) is a sum of finitely many monomials i.e., a polynomial.

15. Towards an Alternative Justification Based on Optimality

- Idea: we would like to select the optimal finite-dimensional family of analytical functions F.
- What is an optimality criterion: when we can decide
 - whether F is better than F' (denoted $F' \prec F$)
 - or F' is better than F ($F \prec F'$)
 - or F' is of the same quality as F (denoted $F \equiv F'$).
- E.g.: numerical criterion $F \prec F' \Leftrightarrow J(F) < J(F')$.
- More general case:
 - when J(F) = J(F'), e.g., for average approximation accuracy J(F),
 - we can still choose between F and F' based on some other criteria J' (e.g., computational simplicity).

Symmetry of . . .

Towards a General . . .

Introduction: Main . . .

A New Model: . . .

Computational . . .

Euclidean Space: Proof
From Euclidean to...

From Minkowski to . . .

Discussion

Towards Analyzing...

Title Page

Page 16 of 25

Go Back

Full Screen

Close

- Reminder:
 - when J(F) = J(F'), e.g., for average approximation accuracy J(F),
 - we can still choose between F and F' based on some other criteria J' (e.g., computational simplicity).
- The resulting criterion is non-numerical:

$$F \prec F' \Leftrightarrow J(F) < J(F') \lor (J(F) = J(F') \& J'(F) < J'(F').$$

- General definition: a (pre)-ordering relation \leq .
- Natural requirement: which operation is better should be not depend on the choice of measuring unit:

$$F \prec F' \Leftrightarrow F_{\lambda} \prec F'_{\lambda}$$
,

where $F_{\lambda} = \{ f_{\lambda} : f \in F \}.$

Symmetry of . . .

Introduction: Main . . .

Towards a General . . .

A New Model: . . .

Computational . . .

Euclidean Space: Proof From Euclidean to . . .

From Minkowski to . . .

Discussion

Towards Analyzing . . . Title Page

Go Back

Full Screen

Close

17. Optimization Approach: Definitions

- We consider the set A of all finite-dimensional spaces of analytical functions.
- By an optimality criterion, we mean a pre-ordering (i.e., a transitive, reflexive relation) \prec on the set A.
- An optimality criterion \leq on the class of all finitedimensional is called *scale-invariant* if
 - for all F, F', and $\lambda \neq 0$,
 - $-F \leq F'$ implies $F_{\lambda} \leq F'_{\lambda}$.
- An optimality criterion \leq is called *final* if there exists
 - one and only one space F
 - that is preferable to all the others, i.e., for which $F' \leq F$ for all $F' \neq F$.

Symmetry of . . . Towards a General . . . A New Model: . . . Computational . . . Euclidean Space: Proof From Euclidean to . . . From Minkowski to . . . Discussion Towards Analyzing . . . Title Page 44 Page 18 of 25 Go Back Full Screen Close Quit

Introduction: Main . . .

18. Why Final Criterion: Motivations

- Reminder: an optimality criterion \leq is final if there exists one and only one optimal space F.
- If no space is optimal relative to some criterion, then this criterion is useless.
- If the criterion selects several spaces F as equally good, then we can also optimize something else.
- Example:
 - if F and F' have the same average approximation accuracy,
 - we can select, among them, the one which is easier to compute.
- Thus, such criteria can be adjusted.
- ullet So, for the final criterion, the optimal space is unique.

Symmetry of . . . Towards a General . . . A New Model: . . . Computational . . . Euclidean Space: Proof From Euclidean to . . . From Minkowski to Discussion Towards Analyzing . . . Title Page Page 19 of 25 Go Back Full Screen Close Quit

Introduction: Main . . .

19. Optimization Approach: Main Result

- Condition: F_{opt} is optimal w.r.t. some scale-invariant and final optimality criterion.
- Conclusion: all elements of F_{opt} are polynomials.
- Proof:
 - optimality means $F \leq F_{\text{opt}}$ for all $F \in A$;
 - in particular, $F_{\lambda^{-1}} \leq F_{\text{opt}}$ for all $F \in A$;
 - due to scale-invariance of \leq , we have $F \leq (F_{\text{opt}})_{\lambda}$ for all $F \in A$;
 - thus, $(F_{\text{opt}})_{\lambda}$ is optimal;
 - since there is only one optimal space, we have

$$(F_{\text{opt}})_{\lambda} = F_{\text{opt}};$$

- thus, the space F_{opt} is scale-invariant;
- we already know that in this case, all $f \in F_{\text{opt}}$ are polynomials.

Symmetry of . . . Towards a General . . . A New Model: . . . Computational . . . Euclidean Space: Proof From Euclidean to . . . From Minkowski to . . . Discussion Towards Analyzing . . . Title Page Page 20 of 25 Go Back Full Screen Close Quit

Introduction: Main . . .

20. What If $f(x_1, \ldots, x_n)$ Is Only Smooth?

Definition. Let n be an arbitrary integer. We say that a finite-dimensional linear space F of smooth functions of n variables is affine-invariant if for every $f \in F$ and for every linear transormation $T: \mathbb{R}^n \to \mathbb{R}^n$, the function

$$f_T(x) \stackrel{\mathrm{def}}{=} f(Tx)$$

also belongs to the family F.

Main result. For every affine-invariant finite-dimensional linear space F of smooth functions, every element $f \in F$ is a polynomial.

21. Proof: Main Ideas

- Let $f_1(x), \ldots, f_m(x)$ be the basis of F.
- For every $i \leq m$, for every variable x_j and for every $\lambda > 0$, we have

$$f_i(x_1,\ldots,x_{j-1},\lambda\cdot x_j,x_{j+1},\ldots,x_n)\in F.$$

• Since f_i form a basis, for some $c_{ik}(\lambda)$, we have

$$f_i(x_1,\ldots,x_{j-1},\lambda\cdot x_j,x_{j+1},\ldots,x_n) =$$

$$\sum_{k=1}^{m} c_{ik}(\lambda) \cdot f_k(x_1, \dots, x_{j-1}, x_j, x_{j+1}, \dots, x_n).$$

• Differentiating both sides by λ , we get

$$x_j \cdot \frac{\partial f_i}{\partial x_j} = \sum_{k=1}^m c_{jk} \cdot f_k.$$

22. Proof (cont-d)

- Reminder: $x_j \cdot \frac{\partial f_i}{\partial x_j} = \sum_{k=1}^m c_{jk} \cdot f_k$.
- For $X_j \stackrel{\text{def}}{=} \ln(x_j)$, we have $\frac{\partial f_i}{\partial X_j} = \sum_{k=1}^m c_{ik} \cdot f_k$.
- In terms of X_j , we have a system of linear ODEs with constant coefficients.
- A general solution to such a system is a linear combination of terms
 - $\exp(\alpha \cdot X_j) = x_j^{\alpha}$ (with possible complex α) and
 - $X_j^p \cdot \exp(\alpha \cdot X_j) = x_j^\alpha \cdot \ln^p(x_j)$.
- A general linear transformation leads to different terms

 except when we have x_i^{α} for integer $\alpha \geq 0$.
- Thus, every $f \in F$ is a polynomial in each variable hence a polynomial.

Introduction: Main...

Symmetry of . . .

Towards a General . . .

A New Model: . . .

Computational . . .

Euclidean Space: Proof

From Euclidean to . . .
From Minkowski to . . .

Discussion

Towards Analyzing . . .

Title Page

44

Page 23 of 25

7 450

Go Back

Full Screen

Close

23. Acknowledgments

This work was supported in part

- by the National Science Foundation grants HRD-0734825 and DUE-0926721,
- by Grant 1 T36 GM078000-01 from the National Institutes of Health,
- by Grant MSM 6198898701 from MŠMT of Czech Republic,
- by Grant 5015 "Application of fuzzy logic with operators in the knowledge based systems" from the Science and Technology Centre in Ukraine (STCU), funded by European Union, and
- by the International Finsler Foundation.

24. References Related to Other Application Areas

- Luce, R. D., Raiffa, R.: Games and decisions: introduction and critical survey, Dover, New York, 1989.
- Nguyen H. T., Kosheleva O., Kreinovich, V.: "Decision Making Beyond Arrow's Impossibility Theorem", International Journal of Intelligent Systems, 24(1), 27–47 (2009).
- Nguyen, H. T., Walker, E. A.: A First Course in Fuzzy Logic, Chapman & Hall/CRC Press, Boca Raton, Florida, 2006.

Introduction: Main . . . Symmetry of . . . Towards a General . . . A New Model: . . . Computational . . . Euclidean Space: Proof From Euclidean to . . . From Minkowski to ... Discussion Towards Analyzing . . . Title Page 44 Page 25 of 25 Go Back Full Screen Close