Propagating Range (Uncertainty) and Continuity Information Through Computations: From Real-Valued Intervals to General Sets

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
University, El Paso, TX 79968, USA
vladik@utep.edu

How to Describe . . . Functional . . . Need to Take ... Propagating Range . . . Propagating Range . . . Importance of . . Propagating . . Main Result Examples Home Page **>>** Page 1 of 28 Go Back Full Screen Close Quit

1. How to Describe Quantities: From Real Values to General Sets

- Usually, the values of physical quantities are described by real numbers.
- However, some physical quantities require a more complex description:
 - some quantities are characterized by a vector (e.g., force or velocity),
 - some by a function (e.g., a current value of a field) or by a geometric shape.
- In view of this possibility, we will assume that the set S of possible values of each quantity:
 - is not necessarily a set of real numbers,
 - it can be a general set.

2. Functional Dependencies are Ubiquitous and Can Be Complex

- In many practical situations, quantities are dependent on each other.
- Often, we know a function $y = f(x_1, ..., x_n)$ that relates quantities $x_1, ..., x_n$ with a quantity y.
- In simple cases, we have an explicit expression relating x_i and y.
- In more complex cases, we have a *sequence* of such expressions
 - we first determine some intermediate quantities z_j in terms of x_i ,
 - then other intermediate quantities z_k in terms of z_j ,
 - **. . .**
 - finally, y in terms of the intermediate quantities z_i (and maybe also in terms of x_i).

3. Definition

- Let n and N be natural numbers, and let S_1, \ldots, S_n be sets.
- A computation scheme f of length N w/n inputs is a seq. of tuples t_{n+j} (j = 1, ..., N) each of which has:
 - a set S_{n+j} ;
 - a finite sequence of positive integers

$$a(j,1) < \ldots < a(j,k(j)) < n+j;$$
 and

- a function $f_{n+j}: S_{a(j,1)} \times \ldots \times S_{a(j,k(j))} \to S_{n+j}$.
- Let us select a sequence $x_1 \in S_1, \ldots, x_n \in S_n$.
- Once the values x_1, \ldots, x_{n+j-1} are defined, the next value x_{n+j} is defined as $f_{n+j}(x_{a(j,1)}, \ldots, x_{a(j,k(j))})$.
- The value x_{n+N} is called the result $f(x_1, \ldots, x_n)$ of applying f to x_i .

How to Describe . . .
Functional . . .

Need to Take...

Propagating Range...

Propagating Range...

Importance of...

Propagating . . .

Main Result

Examples

Home Page

Title Page

Go Back

Full Screen

Close

4. Example

- The expression $f(x_1) = x_1 \cdot (1 x_1)$ can be described by the following computation scheme:
 - first, we compute $x_2 = 1 x_1$,
 - then we compute $y = x_3 = x_1 \cdot x_2$.
- In this case:
 - $-S_1 = S_2 = S_3 = \mathbb{R},$
 - on the first intermediate step, we have a function of one variable $f_2(a) = 1 a$;
 - on the second computation step, we have a function of two variables $f_3(a,b) = a \cdot b$.

5. Intermediate Results as Functions of the Inputs

- The result of each intermediate step is a function of the inputs: $x_{n+j} = g_{n+j}(x_1, \ldots, x_n)$.
- Then, $g_{n+N}(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$.
- The function g_{n+j} appears if we "truncate" the original computation scheme on the j-th step.
- The original values x_1, \ldots, x_n can also be viewed as functions of the n input variables x_1, \ldots, x_n :

$$g_i(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)=x_i.$$

• In terms of these functions, each computation step takes the form

$$x_{n+j} = g_{n+j}(x_1, \dots, x_n) =$$

$$f_{n+j}(g_{a(j,1)}(x_1, \dots, x_n), \dots, g_{a(j,k(j))}(x_1, \dots, x_n)).$$

Functional . . . Need to Take . . . Propagating Range . . . Propagating Range . . . Importance of . . . Propagating . . . Main Result Examples Home Page Title Page **>>** Page 6 of 28 Go Back Full Screen Close Quit

6. Need to Take Uncertainty into Account

- In practice, we only have partial information about the inputs x_i .
- For each i, there is a whole set X_i of values which are consistent with our knowledge.
- In general, different values $x_i \in X_i$ lead to different values $y = f(x_1, \ldots, x_n)$.
- It is therefore desirable to find the *range* of possible values, i.e., the set

$$f(X_1,\ldots,X_n) \stackrel{\text{def}}{=} \{f(x_1,\ldots,x_n) : x_1 \in X_1,\ldots,x_n \in X_n\}.$$

• If it is difficult to compute the range, we need at least an enclosure $Y \supseteq f(X_1, \ldots, X_n)$ for this range.

Functional . . . Need to Take . . . Propagating Range . . . Propagating Range . . . Importance of . . . Propagating... Main Result Examples Home Page Title Page 44 **>>** Page 7 of 28 Go Back Full Screen Close Quit

7. Types of Sets for Describing Uncertainty

- In interval computations, we usually assume:
 - that the set S_i is the set of real numbers, and
 - that the set X_i is an interval.
- However, it is also possible that the set X_i is more general.
- The set X_i may be a multi-interval: a union of finitely many intervals.
- When S_i is a multi-dimensional Euclidean space, the set X_i can be:
 - a box (rectangular parallelepiped),
 - an ellipsoid, or
 - a more general (convex or non-convex) set.

How to Describe . . . Functional . . . Need to Take . . . Propagating Range . . . Propagating Range . . . Importance of . . . Propagating . . . Main Result Examples Home Page Title Page **>>** Page 8 of 28 Go Back Full Screen Close

8. Propagating Range Through Computations: Idea

- We follow the computations of $f(x_1, ..., x_n)$ step-by-step:
 - we start with ranges X_1, \ldots, X_n of the inputs,
 - we sequentially compute the enclosures X_{n+j} for the ranges of all intermediate results,
 - finally, on the last computation step, we get the desired enclosure $Y = X_{n+N}$.
- On each intermediate step, we have a procedure $G(Y_1, \ldots, Y_m)$ that transforms:
 - enclosures Y_i for the ranges $g_{a(j,k)}(X_1,\ldots,X_n)$
 - into an enclosure for the range of the result.
- Requirement: if $Y_i \supseteq Z_i$, then

$$G(Y_1,\ldots,Y_m)\supseteq g(Z_1,\ldots,X_n).$$

Functional . . . Need to Take . . . Propagating Range . . . Propagating Range . . . Importance of . . . Propagating . . . Main Result Examples Home Page Title Page **>>** Page 9 of 28 Go Back Full Screen Close

Quit

9. Propagating Range Through Computations: Interval Computations as an Example

- Parsing: inside the computer, every algorithm consists of elementary operations $(+, -, \cdot, \min, \max, \text{etc.})$.
- Interval arithmetic: for each elementary operation f(a, b),
 - if we know the intervals \mathbf{a} and \mathbf{b} ,
 - we can compute the exact range $f(\mathbf{a}, \mathbf{b})$:

$$\frac{1}{[\underline{a},\overline{a}]} = \begin{bmatrix} \frac{1}{\overline{a}}, \frac{1}{\underline{a}} \end{bmatrix} \text{ if } 0 \not\in [\underline{a},\overline{a}]; \quad \frac{[\underline{a},\overline{a}]}{[\underline{b},\overline{b}]} = [\underline{a},\overline{a}] \cdot \frac{1}{[\underline{b},\overline{b}]}.$$

- Main idea: replace each elementary operation in f by the corresponding operation of interval arithmetic.
- Known result: we get an enclosure $Y \supseteq y$ for the desired range.

How to Describe . . . Functional . . . Need to Take ... Propagating Range . . . Propagating Range . . . Importance of . . Propagating . . . Main Result Examples Home Page Title Page **>>** Page 10 of 28 Go Back Full Screen

Close

10. Interval Computations: toy example

- The expression $f(x_1) = x_1 \cdot (1 x_1)$ can be described by the following computation scheme:
 - first, we compute $x_2 = 1 x_1$,
 - then we compute $y = x_3 = x_1 \cdot x_2$.
- The range $\mathbf{y} = f(\mathbf{x}_1)$ of the function $f(x_1) = x_1 \cdot (1 x_1)$ over the interval $\mathbf{x}_1 = [0, 1]$ is $\mathbf{y} = [0, 0.25]$.
- Straightforward interval computations:
 - compute

$$\mathbf{x}_2 = 1 - [0, 1] = [1, 1] - [0, 1] = [1 - 1, 1 - 0] = [0, 1],$$

- then compute

$$\mathbf{Y} = \mathbf{x_3} = \mathbf{x_1} \cdot \mathbf{x_2} = [0, 1] \cdot [0, 1] = [\min(0 \cdot 0, 0 \cdot 1, 1 \cdot 0, 1 \cdot 1), \max(0 \cdot 0, 0 \cdot 1, 1 \cdot 0, 1 \cdot 1)] = [0, 1].$$

How to Describe . . .

Functional . . .

Need to Take...

Propagating Range...

Propagating Range...

Importance of . . .

Propagating . . .

Main Result

Examples

impies

Home Page

Title Page

Page 11 of 28

Go

Go Back

F. 11. C

Full Screen

Close

Close

- In some cases, it is important to check whether a function $f(x_1, \ldots, x_n)$ is continuous.
- For example, it is useful to determine when the system of equations has a solution.
- When each range S_i is an interval, then Brouwer's fixed point theorem says that:
 - if f is a continuous function and

$$f(S_1 \times \ldots \times S_n) \subseteq S_1 \times \ldots \times S_n,$$

– then there exists a point

$$x = (x_1, \ldots, x_n) \in S_1 \times \ldots \times S_n$$
 for which $x = f(x)$.

- In other cases, it may be beneficial to know that a function is *not* continuous.
- For example, in physical applications, discontinuity may be an indication of a phase transition.

How to Describe . . . Functional . . . Need to Take ... Propagating Range . . . Propagating Range . . . Importance of . . Propagating.. Main Result Examples Home Page Title Page **>>** Page 12 of 28 Go Back Full Screen

Close

12. Propagating Continuity Information

- It is known that a composition of continuous functions is always continuous.
- This fact allows us to propagate continuity info.
- \bullet For such a propagation, on each intermediate step j, we need to keep:
 - not only the enclosure X_j for the corresponding function $g_{n+j}(x_1,\ldots,x_n)$,
 - but also an information re whether this intermediate function is continuous (c) or not (d).
- Our knowledge may be partial:
 - we may know that g_{n+j} is continuous: $C = \{c\}$;
 - we may know that g_{n+j} is discontinuous: $C = \{d\}$;
 - we may not know whether g_{n+j} is continuous or not: $C = \{c, d\}$.

Functional . . . Need to Take . . . Propagating Range . . . Propagating Range . . . Importance of . . Propagating.. Main Result Examples Home Page Title Page **>>** Page 13 of 28 Go Back Full Screen Close Quit

- Let T_1, \ldots, T_m, Y be topological spaces, and let $q: T_1 \times \ldots \times T_m \to Y$.
- We say that a mapping

 $p: 2^{T_1}_{\mathcal{C}} \times \{c, d\} \times \ldots \times 2^{T_m}_{\mathcal{C}} \times \{c, d\} \rightarrow \{\{c\}, \{d\}, \{c, d\}\}\}$ is a *continuity propagator* corresponding to q if

- for every topological space Z and for all functions

$$h_1: Z \to T_1, \ldots, h_m: Z \to T_m,$$

- once sets X_1, \ldots, X_m are enclosures for $h_1(Z), \ldots, h_m(Z)$, and c_i are continuities of the functions h_i ,
- then the continuity c_h of the function

$$h(z) \stackrel{\text{def}}{=} g(h_1(z), \dots, h_m(z))$$

is contained in the set $p(X_1, c_1, \ldots, X_m, c_m)$.

How to Describe . . .

Need to Take...

Functional . . .

Propagating Range...

Propagating Range...

Importance of . . .
Propagating . . .

Main Result

Examples

_xampics

Home Page

Title Page

Page 14 of 28

Go Back

Full Screen

Close

14. Discussion

• If for every i, we have $X_i \supseteq h_i(Z)$, then

$$c_h \in p(X_1, c_1, \dots, X_m, c_m).$$

- Sometimes we do not know the continuity c_i of some of the inputs.
- Then we have to consider all possible values of these continuities:
 - if we only know the sets C_i that contain the actual (unknown) values c_i ,
 - then $c_h \in p(X_1, C_1, \dots, X_m, C_m)$, where

$$p(X_1, C_1, \dots, X_m, C_m) \stackrel{\text{def}}{=} \bigcup_{c_i \in C_i} p(X_1, c_1, \dots, X_m, c_m),$$

and the union is taken over all possible combinations $c_i \in C_i$. How to Describe . . . Functional . . . Need to Take . . . Propagating Range . . . Propagating Range . . . Importance of . . . Propagating.. Main Result Examples Home Page Title Page **>>** Page 15 of 28 Go Back

Full Screen

Close

15. Propagating Continuity Information via Computations

- For each computation scheme f and for all inputs sets X_1, \ldots, X_n ,
 - once we know set enclosures F_{n+j} for all the functions f_{n+j} ,
 - we replace each computation $f_{n+j}(x_{a(j,1)}, \ldots, x_{a(j,k(j))})$ by the corresponding computation with sets,
 - and simultaneously we compute the set C_{n+j} .
- As a result:
 - we get not only the desired enclosure Y for the range $f(X_1, \ldots, X_n)$,
 - we also get the continuity information C_f about the function $f(x_1, \ldots, x_n)$ s.t. $c_f \in C_f$.

16. How to Check Whether a Given Function is a Continuity Propagator?

• Our definition of a continuity propagator is that a certain property holds for all possible functions

$$h_i: Z \to X_i$$
.

- Checking that some property holds for all possible functions may be difficult.
- It is therefore desirable to come up with a simpler equivalent definition.
- This equivalent definition is provided in this talk.
- To explain this new definition, we need to introduce several auxiliary notions.

First Auxiliary Notion: Dummy Variable

- For $g: X_1 \times \ldots \times X_m \to Y$, the *i*-th variable is dummy if the function does not depend on this variable.
- In precise terms: for all possible values $x_1 \in X_1, \ldots, x_{i-1} \in$ $X_{i-1}, x_i, x_i' \in X_i, x_{i+1} \in X_{i+1}, \dots, x_m \in X_m$, we have

$$g(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_m) =$$

$$g(x_1,\ldots,x_{i-1},x'_i,x_{i+1},\ldots,x_m).$$

- Examples:
 - for a constant function, all inputs are dummy variables:
 - for a function $g(x_1, x_2, x_3) = x_1^2 + x_2$, the variable x_3 is a dummy variable.
- A variable is called *essential* if it is not a dummy variable.

Functional . . .

Need to Take . . .

How to Describe . . .

Propagating Range . . .

Propagating Range . . . Importance of . .

Propagating...

Main Result

Examples

Home Page

Title Page

Page 18 of 28

Go Back

Full Screen

Close

18. Second Auxiliary Notion: Continuously Reversible Functions

- We say that a function $g(x_1, ..., x_m)$ is continuously reversible from variables $x_{i_1}, ..., x_{i_k}$ to a variable x_i if:
 - given the value of $y = f(x_1, \dots, x_n)$ and
 - given the values of these variables x_{i_1}, \ldots, x_{i_k} ,
 - we can uniquely reconstruct the value of x_i :

$$x_j = H(y, x_{i_1}, \dots, x_{i_k})$$

- and the corresponding dependence H is continuous.
- Example: the function $f(x_1, x_2) = x_1 + x_2$ is continuously reversible with respect to each of the variables:

$$x_2 = y - x_1, \quad x_1 = y - x_2.$$

19. Main Result

• Let $g: T_1 \times \ldots \times T_m \to Y$ and

$$p: 2_{\mathcal{C}}^{T_1} \times \{c, d\} \times \ldots \times 2_{\mathcal{C}}^{T_m} \times \{c, d\} \to \{\{c\}, \{d\}, \{c, d\}\}.$$

- p is a continuity propagator for $g \Leftrightarrow$ it satisfies the following 3 properties for all $X_i \subseteq T_i$ and $c_i \in \{c, d\}$:
 - if the function $g: X_1 \times ... \times X_m \to Y$ is continuous, then $c \in p(X_1, c, ..., X_m, c)$;
 - if g is cont. reversible from all the variables s.t. $c_i = c$ to one of the variables for which $c_j = d$, then

$$d \in p(X_1, c_1, \dots, X_m, c_m);$$

- in all other cases, $p(X_1, c_1, ..., X_m, c_m) = \{c, d\}.$

How to Describe . . . Functional.. Need to Take . . . Propagating Range . . . Propagating Range . . . Importance of . . Propagating.. Main Result Examples Home Page Title Page 44 **>>** Page 20 of 28 Go Back Full Screen Close Quit

If we want to get the narrowest possible enclosures for the actual continuity, we should take:

• if the function $g: X_1 \times \ldots \times X_m \to Y$ is continuous, then

$$p(X_1,c,\ldots,X_m,c)=\{c\};$$

• if the g is continuously reversible from all the variables for which $c_i = c$ to one of the variables for which $c_j = d$:

$$p(X_1, c_1, \dots, X_m, c_m) = \{d\};$$

• in all other cases:

$$p(X_1, c_1, \dots, X_m, c_m) = \{c, d\}.$$

How to Describe . . . Functional . . . Need to Take ... Propagating Range . . . Propagating Range . . . Importance of . . . Propagating... Main Result Examples Home Page Title Page **>>** Page 21 of 28 Go Back Full Screen Close Quit

21. Discussion

 \bullet On each computation step j, we compute

$$x_{n+j} = g_{n+j}(x_1, \dots, x_n) =$$

$$f_{n+j}(g_{a(j,1)}(x_1, \dots, x_n), \dots, g_{a(j,k(j))}(x_1, \dots, x_n)).$$

- If f_{n+j} and $g_{a(j,k)}$ (corr. to all essential variables) are continuous, then g_{n+j} is also continuous.
- If f_{n+j} is cont. reversible from the set of all cont. variables to one of the discont. variables, then g_{n+j} is discont.
- In all other cases, $C_{n+j} = \{c, d\}$: g_{n+j} can be continuous and can be discontinuous.
- Comment: the fact that the composition of continuous functions is continuous is well known.
- What is new: that in all other situations except for cont. reversible f-s no conclusion can be made.

Functional . . . Need to Take ... Propagating Range . . . Propagating Range . . . Importance of . . . Propagating... Main Result Examples Home Page Title Page **>>** Page 22 of 28 Go Back Full Screen Close Quit

22. Examples

- Sample function: $g(x_1, x_2) = x_1 + x_2$.
- Example 1: if $h_1(z)$ and $h_2(z)$ are continuous then $h(z) = g(x_1(z), x_2(z)) = h_1(z) + h_2(z)$ is continuous.
- *Proof:* straightforward.
- Example 2: if $h_1(z)$ is continuous and $h_2(z)$ is discontinuous, then $h(z) = h_1(z) + h_2(z)$ is discontinuous.
- Proof:
 - we can recover $h_2(z)$ as $h(z) h_1(z)$;
 - this recovery function a b is continuous;
 - thus, if h(z) was continuous, we could conclude that $h_2(z)$ is continuous as well and it is not.

23. What If We Are Only Interested in Detecting Continuity?

- In many practical situations, we are only interested in knowing whether continuity can be confirmed or not.
- In such situations,
 - when the continuity cannot be confirmed,
 - we are not interested in spending time on confirming discontinuity.
- In terms of our symbols c and d, this means that we are interested only in two cases:
 - when the continuity is confirmed, i.e., when $C = \{c\}$; and
 - when the continuity has not been confirmed but could still be, in which case $C = \{c, d\}$.
- This means that we are interested in continuity propagators whose possible values are $\{c\}$ or $\{c,d\}$.

Functional . . . Need to Take ... Propagating Range . . . Propagating Range . . . Importance of . . . Propagating.. Main Result Examples Home Page Title Page **>>** Page 24 of 28 Go Back Full Screen Close Quit

24. Main Result: Simplified Version

- Let $g: T_1 \times \ldots \times T_m \to Y$ and
 - $p: 2_{\mathcal{C}}^{T_1} \times \{c, d\} \times \ldots \times 2_{\mathcal{C}}^{T_m} \times \{c, d\} \to \{\{c\}, \{c, d\}\}.$
- p is a continuity propagator for $g \Leftrightarrow$ it satisfies the following 3 properties for all $X_i \subseteq T_i$ and $c_i \in \{c, d\}$:
 - if the function $g: X_1 \times ... \times X_m \to Y$ is continuous, then $c \in p(X_1, c, ..., X_m, c)$;
 - in all other cases, $p(X_1, c_1, ..., X_m, c_m) = \{c, d\}.$

Functional . . . Need to Take . . . Propagating Range . . . Propagating Range . . . Importance of . . Propagating.. Main Result Examples Home Page Title Page 44 **>>** Page 25 of 28 Go Back Full Screen Close Quit

25. How to Get the Narrowest Possible Enclosures for the Actual Continuity

If we want to get the narrowest possible enclosures for the actual continuity, we should take:

• if the function $g: X_1 \times \ldots \times X_m \to Y$ is continuous, then

$$p(X_1,c,\ldots,X_m,c)=\{c\};$$

• in all other cases:

$$p(X_1, c_1, \ldots, X_m, c_m) = \{c, d\}.$$

Functional . . . Need to Take... Propagating Range . . . Propagating Range . . . Importance of . . . Propagating . . . Main Result Examples Home Page Title Page 44 **>>** Page 26 of 28 Go Back Full Screen Close Quit

26. Discussion

 \bullet On each computation step j, we compute

$$x_{n+j} = g_{n+j}(x_1, \dots, x_n) =$$

$$f_{n+j}(g_{a(j,1)}(x_1, \dots, x_n), \dots, g_{a(j,k(j))}(x_1, \dots, x_n)).$$

- If f_{n+j} and $g_{a(j,k)}$ (corr. to all essential variables) are continuous, then g_{n+j} is also continuous.
- In all other cases, $C_{n+j} = \{c, d\}$: g_{n+j} can be continuous and can be discontinuous.
- Comment: the fact that the composition of continuous functions is continuous is well known.
- What is new: that in all other situations no conclusion can be made.

27. Acknowledgments

- This work was supported in part:
 - by the National Science Foundation grants HRD-0734825 and DUE-0926721, and
 - by Grant 1 T36 GM078000-01 from the National Institutes of Health.
- The author is thankful:
 - to all the participants of the 2011 Dagstuhl Seminar on Uncertainty Modeling and Analysis,
 - especially to R. B. Kearfott, A. Neumaier, J. Pryce,
 N. Revol, and J. Wolff von Gudenberg,

for valuable discussions.

