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• We analyzed students’ proving difficulties on a final examination to 
collect information for teaching and redesigning our inquiry-based 
transition-to-proof course. 

• The proving difficulties we examined are mostly about the proving 
process, not mathematical content.  
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Theoretical Perspective 

• We view a proof construction as a sequence of mental or physical 
actions. 

• These actions arise from a person’s (inner interpretation of) 
situations, in a partly completed proof construction. 
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• When similar situations are followed by similar actions, an 
“automated link” may be learned between such situations and 
actions. (Bargh, pp. 30-37) 

• The situation is then followed by the action, without the need for any 
conscious processing between the two. 
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Example of an Action 

• In a situation calling for C to be proved from A or B, one constructs 2 
independent subproofs arriving at C, one supposing A, the other 
supposing B. 

 

• The action in this case is setting up the proof this way. 

 

• If one has had repeated experience with such proofs, one does not 
have to think about doing or justifying this action, one just does it. 
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Observations 

• Automating actions reduces the burden on working memory, which is 
a limited resource. 

• Some actions are beneficial and should be initiated or encouraged. 

• Others are detrimental and should be eliminated or discouraged. 
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Two Concepts We Have Found Useful 

Proof framework 

• First level: Write the top and bottom parts of a proof that come and 
just from the theorem statement. 

• Second level: Unpack the conclusion and do the “same thing”. 

Exploration (doing something of unknown value, e.g., 
finding/constructing objects, manipulating them)  
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• During proof construction, the partly completed proof and 
scratchwork can be used as aids to reflection and to reduce the 
burden on working memory. 

• A proof is the result of some of the actions in a proof construction. 

• As students are learning proof construction, many actions, such as 
the construction of a proof framework, can be automated.  

• A good way to learn them is through “coached experience” (like riding 
a bicycle or playing soccer). 
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The Course 
• The inquiry-based course, from which the data came, was taught 

entirely from notes with students constructing original proofs, 
presenting them in class, and receiving critiques.  

• In order to coordinate with later courses, the notes included some 
theorems about sets, functions, real analysis, and abstract algebra.  

• Logic was taught in context as the need arose, mainly through the 
discussion of students’ logical errors.  

• The examination questions all asked for original proofs of theorems 
that weren’t in the course notes, but used definitions and theorems 
from the course notes, which were available during the examination. 
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Data Analysis 

 •  We analyzed all 16 take-home and all 16 in-class final examination 
papers from the course.  

• These were analyzed through several iterations, looking for categories 
of students’ proving difficulties, in particular,  actions taken or not 
taken, until the researchers came to an agreement.  

• The categories were chosen at a level of abstraction above specific 
mathematical topics so they would reflect process difficulties.  

• For example, some were about students not unpacking a conclusion, 
as opposed to students having difficulties with quotient groups.  
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Tentative Categories of Difficulties 

We allow categories within categories and hope that their hierarchy will 
help identify the most important needed interventions. We have thus 
far identified the following:  

• omitting beneficial actions or taking detrimental ones 

• inappropriately mimicking a prior proof. 

• inadequate proof framework  

• failure to unpack the hypothesis or the conclusion 

• unfinished proof 

• extraneous statements  

• assumption of the negation of a previously established fact 
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• difficulties with proof by contradiction 

• failure to use cases when appropriate 

• wrong or improperly used definitions 

• insufficient warrant 

• incorrect deduction 

• assumption of all or part of the conclusion 

• assertion of an untrue “result” 

• computational errors 

• misuse of logic 

• nonstandard language/notation. 
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Examples 

• We next give examples – first there will be a sample correct 
proof. 

 

• This will be followed by an actual student “proof” of the 
same theorem. 

13 



A Sample Correct Proof 

Theorem. Let S be a semigroup with an identity element e. If, for all s in 
S, ss = e, then S is commutative.  
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Theorem. Let S be a semigroup with an identity element 
e. If, for all s in S, ss = e, then S is commutative.  

 
Proof: 

Let S be a semigroup with identity e. Suppose for all s ϵ S, ss = e. 
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Theorem. Let S be a semigroup with an identity element 
e. If, for all s in S, ss = e, then S is commutative.  

 
Proof: 

Let S be a semigroup with identity e. Suppose for all s ϵ S, ss = e. 

 

 

 

 

 

Therefore, S is commutative. 
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Theorem. Let S be a semigroup with an identity element 
e. If, for all s in S, ss = e, then S is commutative.  

 
Proof: 

Let S be a semigroup with identity e. Suppose for all s ϵ S, ss = e. 

Let a, b be elements in S. 

 

 

 

Thus ab = ba. 

Therefore, S is commutative. 
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Theorem. Let S be a semigroup with an identity element 
e. If, for all s in S, ss = e, then S is commutative.  

 
Proof: 

Let S be a semigroup with identity e. Suppose for all s ϵ S, ss = e. 

Let a, b be elements in S. 

Now, abab = e, so (abab)b = eb = b. 

 

 

Thus ba = ab. 

Therefore, S is commutative. 
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Theorem. Let S be a semigroup with an identity element 
e. If, for all s in S, ss = e, then S is commutative.  

 
Proof: 

Let S be a semigroup with identity e. Suppose for all s ϵ S, ss = e. 

Let a, b be elements in S. 

Now, abab = e, so (abab)b = eb = b. 

But (abab)b = aba(bb) = abae = aba. 

 

Thus ba = ab. 

Therefore, S is commutative. 
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Theorem. Let S be a semigroup with an identity element 
e. If, for all s in S, ss = e, then S is commutative.  

 
Proof: 

Let S be a semigroup with identity e. Suppose for all s ϵ S, ss = e. 

Let a, b be elements in S. 

Now, abab = e, so (abab)b = eb = b. 

But (abab)b = aba(bb) = abae = aba. 

So, b = aba, so ba = (aba)a = ab(aa) = abe = ab. 

Thus ba = ab. 

Therefore, S is commutative. 
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A Student-Constructed “Proof” of the Same 
Theorem 
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Student “Proof” 5A.4 

Let S be a semigroup with an 
identity element, e. Let s ϵ S such 
that ss = e. 

Because e is an identity element, es 
= se = s.  

Now, s = se = s(ss). 

Since S is a semigroup, (ss)s = es = s. 

Thus es = se. 

Therefore, S is commutative. QED. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scratchwork 

7.1: A semigroup is called 
commutative or Abelian if, 
for each a and b ϵ S, ab = ba.
          

7.5: An element e of a 
semigroup S is called an 
identity element of S if,  

for all s ϵ S, es = se = s. 
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Student “Proof” 5A.4 
 Let S be a semigroup with an identity  

element, e. Let s ϵ S such that ss = e.  

 

 

Therefore, S is commutative. QED. 

 

The second sentence should have been “Suppose for all s ϵ S, ss = e.” 

With this change, the first part of the framework would have been 
correct. 
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Student “Proof” 5A.4 
 Let S be a semigroup with an identity  

element, e. Let s ϵ S such that ss = e.  

 

 

Therefore, S is commutative. QED. 

 

In addition, the student did not finish the framework by introducing 
arbitrary a and b at the top, followed by “Then ab = ba” right above 
the conclusion.  
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Student “Proof” 5A.4 
 Let S be a semigroup with an identity  

element, e. Let s ϵ S such that ss = e.  

 

 

Therefore, S is commutative. QED. 

Also, the student may not have written the conclusion immediately 
after writing the hypothesis. 

These are beneficial actions not taken. 
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Student “Proof” 5A.4 
 Let S be a semigroup with an identity  

element, e. Let s ϵ S such that ss = e.  

 

 

Therefore, S is commutative. QED.  

 

Had the student written the correct second sentence and taken these 
two actions, the situation would have been appropriate for exploring 
and manipulating an object such as abab. 
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Student “Proof” 5A.4 
 Let S be a semigroup with an identity  

element, e. Let s ϵ S such that ss = e.  

 

 

Therefore, S is commutative. QED.  

 

We think that such exploration calls for some self-efficacy, but can lead 
to a correct proof. 
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• We consider what the student then wrote, namely, 

 

  Because e is an identity element, es = se = s.  

  Now, s = se = s(ss). 

  Since S is a semigroup, (ss)s = es = s. 

  Thus es = se. 
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  Because e is an identity element, es = se = s.  

  Now, s = se = s(ss). 

  Since S is a semigroup, (ss)s = es = s. 

  Thus es = se. 

 

The first line above violates the mathematical norm of not including 
definitions that can easily be found outside the proof. Also, it does not 
move the proof forward. 
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  Because e is an identity element, es = se = s.  

  Now, s = se = s(ss). 

  Since S is a semigroup, (ss)s = es = s. 

  Thus es = se. 

 

The next three lines are not wrong, but do not move the proof forward 
because to prove commutativity, one needs two arbitrary elements. 

These actions are detrimental because they can convince the student 
that he/she has accomplished something when that is not the case. 
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Another Sample Correct Proof 

Theorem. Let S and T be semigroups and f:S→T be a homomorphism. If 
G is a subset of S and G is a group with identity e, then f(G) is a group. 
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Theorem. Let S and T be semigroups and f:S→T be a 
homomorphism. If G is a subset of S and G is a group 
with identity e, then f(G) is a group. 
Proof: 

Let S and T be semigroups and f:S→T be a homomorphism. Let G be a subset of S 
and G be a group with identity e. 
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Theorem. Let S and T be semigroups and f:S→T be a 
homomorphism. If G is a subset of S and G is a group 
with identity e, then f(G) is a group. 
Proof: 

Let S and T be semigroups and f:S→T be a homomorphism. Let G be a subset of S 
and G be a group with identity e.  

 

 

 

 

 

Therefore, f(G) is a group.  QED 
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Theorem. Let S and T be semigroups and f:S→T be a 
homomorphism. If G is a subset of S and G is a group 
with identity e, then f(G) is a group. 
Proof: 

Let S and T be semigroups and f:S→T be a homomorphism. Let G be a subset of S 
and G be a group with identity e.  

Part 1: Note that G is a subsemigroup of S so, by Theorem 20.4, f(G) is a semigroup. 

Part 2: 

 

Part 3: 

 

Therefore, f(G) is a group.  QED 
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Theorem. Let S and T be semigroups and f:S→T be a 
homomorphism. If G is a subset of S and G is a group 
with identity e, then f(G) is a group. 
Proof: 

Let S and T be semigroups and f:S→T be a homomorphism. Let G be a subset of S 
and G be a group with identity e.  

Part 1: Note that G is a subsemigroup of S so, by Theorem 20.4, f(G) is a semigroup. 

Part 2: Let y ϵ f(G). Then there is x ϵ G so that f(x) = y. Now f(e) ϵ  f(G) and f(e)y = 
f(e) f(x) = f(ex) = f(x) = y. Similarly, y f(e) = y. Thus f(e) is an identity for  f(G). 

Part 3: 

 

Therefore, f(G) is a group.  QED 

35 



Theorem. Let S and T be semigroups and f:S→T be a 
homomorphism. If G is a subset of S and G is a group 
with identity e, then f(G) is a group. 
Proof: 

Let S and T be semigroups and f:S→T be a homomorphism. Let G be a subset of S 
and G be a group with identity e.  

Part 1: Note that G is a subsemigroup of S so, by Theorem 20.4, f(G) is a semigroup. 

Part 2: Let y ϵ f(G). Then there is x ϵ G so that f(x) = y. Now f(e) ϵ  f(G) and f(e)y = 
f(e) f(x) = f(ex) = f(x) = y. Similarly, y f(e) = y. Thus f(e) is an identity for  f(G). 

Part 3: Let q in f(G). Then there is p ϵ G so that f(p) = q. Now because G is a group, 
there is p' ϵ G so that pp' = p'p = e. Thus q f(p') = f(p) f(p') = f(pp') = f(e), and f(p')q = 
f(p') f(p) = f(p' p) = f(e). Thus, each q ϵ f(G) has an inverse, f(p'), in f(G).  

Therefore, f(G) is a group.  QED. 
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A Student-Constructed “Proof” of the Same 
Theorem 

Theorem. Let S and T be semigroups and f:S→T be a 
homomorphism. If G is a subset of S and G is a group 
with identity e, then f(G) is a group. 

37 



Theorem. Let S and T be semigroups and f:S→T be a homomorphism. If G 
is a subset of S and G is a group with identity e, then f(G) is a group. 

Student “Proof” 9B.4 

Let S and T be semigroups and f:S→T be a homomorphism.  

Suppose G  S and G is a group with identity e.  

Since G is a group and it has identity e, then for each element g in G there is 
an element g’ in G such that gg' = g'g = e.  

Since f is a homomorphism, then for each element x ϵ S and y ϵ S, 
f(xy)=f(x)f(y).  

Since G  S, then f(gg')=f(g)f(g'). So f(gg') = f(g'g) = f(e). So f(G) has an 
element f(e) since f is a function.  

Therefore, f(G) is a group.  QED. 
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Student “Proof” 9B.4 

Let S and T be semigroups and f:S→T be a homomorphism.  

Suppose G  S and G is a group with identity e.  

 

 

 

Therefore, f(G) is a group.  QED. 

 

The student has the “first level” framework correct (assuming he/she wrote the last 
line at the bottom immediately after writing the first two lines). 

To complete the framework, the student should have next considered f(G) and 
noted that there are three things to prove in order for f(G) to be a group. These are 
actions the student did not take. 
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Student “Proof” 9B.4 

Let S and T be semigroups and f:S→T be a homomorphism.  

Suppose G  S and G is a group with identity e.  

Since G is a group and it has identity e, then for each element g in G there is 
an element g’ in G such that gg' = g'g = e.  

Since f is a homomorphism, then for each element x ϵ S and y ϵ S, 
f(xy)=f(x)f(y).  

 

Therefore, f(G) is a group.  QED. 

 

Instead the student included the definitions of inverse in G and of homomorphism. 

These are actions that do not move the proof forward and are detrimental because 
they can convince the student that something useful has been done. 
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Student “Proof” 9B.4 

Let S and T be semigroups and f:S→T be a homomorphism.  

Suppose G  S and G is a group with identity e.  

Since G is a group and it has identity e, then for each element g in G there is 
an element g’ in G such that gg' = g'g = e.  

Since f is a homomorphism, then for each element x ϵ S and y ϵ S, 
f(xy)=f(x)f(y).  

Since G  S, then f(gg')=f(g)f(g'). So f(gg') = f(g'g) = f(e). So f(G) has a an 
element f(e) since f is a function.  

Therefore, f(G) is a group.  QED. 

 

Perhaps the student was trying to show the existence of an identity and inverses 
for f(G), but was unsuccessful. 
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The second student’s work may suggest that he/she had some intuitive 
grasp of the concepts involved. It may be tempting to give partial credit 
to this student, but from the point of view of having a student learn to 
construct proofs, doing so may send the “wrong message”. 

 

Summarizing, both students 

• took a number of actions which they should not have taken and  

• did not take a number of actions which they should have taken.  
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Thank you 

Comments/Questions 
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