A Finite Volume Approach to Multiscale Elasticity

Paul Delgado
NSF Fellow (HRD-1139929)
Doctoral Candidate - Computational Science
University of Texas at El Paso

November 1, 2014

Inspiration

William Kamkwamba, South Africa

Definition

Poroelasticity

Applications

Fluid flow affects solid deformation!

The Challenge

Large variations in material parameters over small spatial scales.

The Goldilocks Problem

Assume $\epsilon << |\Omega|$

- ▶ If $h > \epsilon$, then simulation is fast, but highly inaccurate.
- ▶ If $h < \epsilon$, then simulation is accurate, but extremely slow.

The Curse of Dimensionality

Assuming 10^3 nodes per $\mu \emph{m}$, a Petascale computer solves the equations in

- ► In 2D ⇒≈ 3,000 yrs
- ► In 3D ⇒≈ 31 quadrillion yrs

Moral: Parallelization, alone, will not solve this problem!!!

Conventional Methods

How can we balance the need for accuracy with the need for efficiency?

Multiscale Method

Our approach

Toward a multiscale method for poroelasticity

- Decouple solid & fluid equations
- Develop multiscale methods for each equation

Progress

- Developed & Verified Operator Splitting Method
- Developed 1D Multiscale Flow & Deformation Methods
- Improved methods for neumann conditions & source terms
- Higher Dimensional method for Fluid Flow

Today, we demonstrate our multiscale method for the solid equation in higher dimensions

Solid Equation

$$-\nabla \cdot \sigma = \vec{F} \text{ in } \Omega$$

$$\sigma = \sigma(\epsilon)$$

$$\epsilon = \epsilon(\nabla \vec{u})$$

$$\nabla \vec{u} = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$$

$$u = d(x, y) \text{ on } \partial \Omega_d$$

$$\sigma \cdot n = t(x, y) \text{ on } \partial \Omega_t$$

Momentum balance relates stress to displacement

Methodology

Heterogeneous Multiscale Framework (E & Engquist 2003).

Key Idea

- A fully coupled microscopic model on the entire computational domain Ω
- Seek a solution at a small subset of the microgrid.
- ▶ Key to Efficiency: Use less info than what is available!

Macro Model

Incomplete Finite Volume Method

$$-\int_{\partial CV} \sigma \cdot \vec{\mathbf{n}} = \int_{CV} \vec{F}$$

$$-\int_{CV^E} \sigma_x + \int_{CV^W} \sigma_x - \int_{CV^N} \tau_{xy} + \int_{CV^S} \tau_{xy} = \int_{CV} f$$

$$-\int_{CV^W} \sigma_y + \int_{CV^S} \sigma_y - \int_{CV^E} \tau_{xy} + \int_{CV^W} \tau_{xy} = \int_{CV} g$$
(2)

▶ No explicit constitutive relation $\sigma = \sigma(\epsilon(\nabla \vec{u}))$

Micro Model

Linear Heterogeneous Isotropic Model

$$\nabla \cdot \sigma + \vec{F} = 0$$

$$\sigma(\epsilon) = \begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{xy} & \sigma_y \end{bmatrix} = 2\mu(\vec{x})\epsilon + \lambda(\vec{x})tr(\epsilon)I$$

$$\epsilon(\nabla \vec{u}) = \frac{1}{2} \begin{pmatrix} \nabla \vec{u} + \nabla \vec{u}^T \end{pmatrix}$$

$$\nabla \vec{u} = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$$

Other models are also possible (molecular dynamics, lattice structures, etc...)

Step 1: Initial Guess

Old field variables $(u_{ij}, v_{ij})^K$

Step 2: Loop

For each control volume boundary D

Step 3: Sample

Micro data near CVD boundary midpoint

Step 4: Constraint Projection

Interpolate BC's from local macro field $(u_{ij}, v_{ij})^K$

Step 5: Solve Micromodel

Obtain local micro field in B^D_δ

Step 6: Data Estimation (1)

Calculate total normal & shear force along mid cross-section.

Step 6: Data Estimation (2)

Rescale total forces to entire control volume boundary D

Step 7: Solve Macro Model

Obtain updated field variables $(u_{ij}, v_{ij})^{K+1}$

Key to Micro-Macro Iterations

- Assume $\sigma = 0$ when $\nabla \vec{u} = 0$.
- Assume u_x , u_y , v_x and v_y are independent variables.
- ▶ Taylor series expansion of σ_y , σ_x , and τ_{xy}
- Fixed Point Iteration over K

Then

$$\int_{\partial CV^D} \nu^{K+1} = \sum_{i=1}^4 \frac{\int_{\partial CV^D} \nu^{D,K} \left(G_i^{D,K} \right)}{G_i^{D,K} \cdot e_i} G_i^{D,K+1} \cdot e_i \tag{3}$$

- ▶ Stress Component: $\nu = \sigma_y, \sigma_x$, and τ_{xy}
- **Boundary:** D = N, S, E, W
- ▶ Subgradient: $G_i^{D,K} \equiv vec(\nabla \vec{u}^{D,K}) \circ e_i \text{ (i=1,...,4)}$

 $^{^{1}(\}circ)$ denotes the **Hadamard Product** and e_i denotes **standard basis** in \mathbb{R}^4

Numerical Experiments

Unit Square Domain $\Omega = [0, 1]^2$

Cases w/ Analytical Solutions

- Prescribed displacement u, v functions
- ▶ Smooth material functions λ, μ
- Derived source terms f, g

Cases w/o Analytical Solutions

- ▶ Random material parameters λ , μ
- Prescribed source terms f, g
- Reference Solution obtained numerically

Analyze convergence as the total sampling area $\rightarrow |\Omega|$

Displacement

$$u=v=sin(rac{\pi x}{2})sin(rac{\pi y}{2}),\,\lambda=\mu=11+sin(2\pi x)sin(2\pi y)$$

Normal Stress

Shear Stress

Convergence

Displacement

Normal Stress

Shear Stress

Convergence

Conclusions

- Our method fails as a general purpose PDE solver
- Works best in the worse case scenario: random heterogeneity
- Displacement is well approximated, but not stress.
- Algorithm is highly parallelizable
- Results are consistent with other implementations of HMM.

Future Work

- Multiphysics Simulation
- Parallelization
- Improve stress estimation
- Test with other micromodels