Why μ^p in Fuzzy Clustering?

Kehinde Akinola, Ahnaf Farhan, and Vladik Kreinovich

> University of Texas at El Paso El Paso, TX 79968, USA

kaakinola@miners.utep.edu, afarhan@miners.utep.edu, vladik@utep.edu

1. Formulation of the Problem

- One of the main algorithms for clustering n given d-dimensional points:
 - selects K "typical" values c_k and
 - selects assignments k(i) for each i from 1 to n
 - so as to minimize the sum

$$\sum_{i} (x_i - c_{k(i)})^2.$$

- This minimization is usually done iteratively.
- First, we pick c_k and assign each point x_i to the cluster k whose representative c_k is the closest to x_i .
- Then, we freeze k(i) and select new typical representatives c_k by minimizing the objective function.
- This leads to c_k being an average of all the points x_i assigned to the k-th cluster.

Formulation of the . . . Our Explanation Proof Home Page Title Page Page 2 of 8 Go Back Full Screen Close Quit

2. Formulation of the Problem (cont-d)

- Then, the procedure repeats again and again until the process converges.
- In practice, for some objects, we cannot definitely assign them to a single cluster.
- In such cases, it is reasonable to assign, to each object i,
 - degrees μ_{ik} of belongs to different clusters k,
 - so that $\sum_{k} \mu_{ik} = 1$.
- In this case, it seems reasonable to take each term $(x_i c_k)^2$ with the weight μ_{ik} .
- In other words, it seems reasonable to find the values μ_{ik} and c_k by minimizing the expression

$$\sum_{i,k} \mu_{ik} \cdot (x_i - c_k)^2.$$

3. Formulation of the Problem (cont-d)

• It seems reasonable to minimize

$$\sum_{i,k} \mu_{ik} \cdot (x_i - c_k)^2.$$

- However, this expression is linear in μ_{ik} .
- It is known that the minimum of a linear function under linear constraints is always at a vertex.
- Thus, the minimum is attained when one value μ_{ik} is 1 and the rest are 0s.
- We want to come up with truly fuzzy clustering, with $0 < \mu_{ik} < 1$ for some i and k.
- Thus, we need to replace the factor μ_{ik} with a non-linear expression $f(\mu_{ik})$.
- Then, we minimize the expression $\sum_{i,k} f(\mu_{ik}) \cdot (x_i c_k)^2$.

Formulation of the...

Our Explanation

Proof

Home Page

Title Page

Page 4 of 8

Go Back

Full Screen

Close

4. Formulation of the Problem (cont-d)

• We minimize the expression

$$\sum_{i,k} f(\mu_{ik}) \cdot (x_i - c_k)^2.$$

- In practice, the functions $f(\mu) = \mu^p$ works the best.
- Why?

Formulation of the...

Our Explanation

Proof

Home Page

Title Page

Page 5 of 8

Go Back

Full Screen

Close

5. Our Explanation

- The weights μ_{ik} are normalized so that their sum is 1.
- So, if we delete some clusters or add more clusters, we need to re-normalize these values.
- A usual way to do it is to multiply them by a normalization constant c.
- It is therefore reasonable to require that:
 - the relative quality of different clustering ideas
 - not change is we simply re-scale.
- This implies, e.g., that:
 - if $f(\mu_1) \cdot v_1 = f(\mu_2) \cdot v_2$,
 - then after re-scaling $\mu_i \to c \cdot \mu_i$, we should have $f(c \cdot \mu_1) \cdot v_1 = f(c \cdot \mu_2) \cdot v_2$.
- We show that this condition implies that $f(\mu) = \mu^p$.

Formulation of the...

Our Explanation

Proof

Home Page

Title Page

Go Back

Full Screen

Close

6. Our Explanation (cont-d)

- Indeed, $\frac{f(c \cdot \mu_2)}{f(c \cdot \mu_1)} = \frac{v_1}{v_2} = \frac{f(\mu_2)}{f(\mu_1)}$.
- Thus $r \stackrel{\text{def}}{=} \frac{f(c \cdot \mu_1)}{f(\mu_1)} = \frac{f(c \cdot \mu_2)}{f(\mu_2)}$ for all μ_1 and μ_2 .
- So, the ratio r does not depend on μ : r = r(c), and

$$f(c \cdot \mu) = r(c) \cdot f(\mu).$$

- It is known that the only continuous solutions of this functional equations are $f(\mu) = C \cdot \mu^p$.
- Minimization is not affected if we divide the objective function by C and get $f(\mu) = \mu^p$.

Formulation of the . . .

Our Explanation

Proof

Home Page

Title Page

Page 7 of 8

Go Back

Full Screen

Close

7. Proof

- We can solve the equation $f(c \cdot \mu) = r(c) \cdot f(\mu)$ when $f(\mu)$ is differentiable.
- Indeed, since $f(\mu)$ is differentiable, the ratio $r(c) = \frac{f(c \cdot \mu)}{f(\mu)}$ is also differentiable.
- If we differentiate both sides of the equation with respect to c, we get $\mu \cdot f'(c \cdot \mu) = r'(c) \cdot f(\mu)$.
- For c = 1, we get $\mu \cdot \frac{df}{d\mu} = p \cdot f$, where $p \stackrel{\text{def}}{=} r'(1)$.
- If we move all the terms containing f to one side and all others to another, we get $\frac{df}{f} = p \cdot \frac{d\mu}{\mu}$.
- Integrating, we get $\ln(f) = p \cdot \ln(\mu) + c_1$.
- If we apply exp to both sides, we get $f(\mu) = C \cdot \mu^p$, where $C = \exp(c_1)$.

Formulation of the...

Our Explanation

Proof

Home Page

Title Page

Page 8 of 8

Go Back

Full Screen

Close