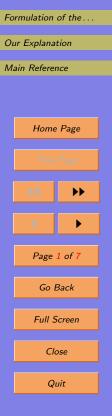
Towards a Natural Interval Interpretation of Pythagorean and Complex Degrees of Confidence

Jose Perez, Eric Torres, and Vladik Kreinovich

University of Texas at El Paso El Paso, TX 79968, USA

jmperez6@miners.utep.edu emtorres6@miners.utep.edu vladik@utep.edu



1. Formulation of the Problem

- Often:
 - we only know the expert's degrees of confidence $a, b \in [0, 1]$ in statements A and B,
 - and we need to estimate the expert's degree of confidence in A & B.
- The algorithm $f_{\&}(a,b)$ providing the corresponding estimate is known as an "and"-operation, or a t-norm.
- One of the most frequently used "and"-operation is $\min(a, b)$.
- Similarly, one of the most frequently used "or"operation is

 $\max(a,b)$.

Formulation of the . . . Our Explanation Main Reference Home Page Title Page Page 2 of 7 Go Back Full Screen Close Quit

2. Formulation of the Problem (cont-d)

- Often, it is difficult for an expert to describe his/her degree of certainty by a single number a.
- An expert is more comfortable describing it by range (interval) $[\underline{a}, \overline{a}]$ of possible values.
- An alternative way of describing this is as an *intuition-istic fuzzy degree*, i.e., a pair of values \underline{a} and $1 \overline{a}$.
- If we know:
 - intervals $[\underline{a}, \overline{a}]$ and $[\underline{b}, \overline{b}]$ corresponding to a and b,
 - then the range of possible degree of confidence in A & B is formed by values $\min(a, b)$ corresponding to all $a \in [\underline{a}, \overline{a}]$ and $b \in [\underline{b}, \overline{b}]$.
- Since $\min(a, b)$ is monotonic, this range has the form $[\min(a, b), \min(\overline{a}, \overline{b})].$
- Similarly, the range for $A \vee B$ is $[\max(\underline{a},\underline{b}), \max(\overline{a},\overline{b})]$.

3. Formulation of the Problem (cont-d)

- A recent paper describes extensions of the above definitions from $a, b \in [0, 1]$ to $a, b \in [-1, 1]$.
- These extensions are denoted by

 $[\operatorname{absmin}(\underline{a},\underline{b}),\operatorname{absmin}(\overline{a},\overline{b})]$ and $[\operatorname{absmax}(\underline{a},\underline{b}),\operatorname{absmax}(\overline{a},\overline{b})].$

- Here, absmin(a, b) = a if |a| < |b|.
- absmin(a, b) = b is |a| > |b|, and
- absmin(a,b)=-|a| if |a|=|b| and $a \neq b$.
- $\operatorname{absmax}(a, b) = a \text{ if } |a| > |b|.$
- absmax(a, b) = b if |a| < |b|, and
- $absmax(a, b) = |a| \text{ if } |a| = |b| \text{ and } a \neq b.$
- These operations have nice properties associativity, distributivity but what is their meaning?

Formulation of the...

Our Explanation

Main Reference

Home Page

Title Page

Go Back

Full Screen

Close

Quit

4. Our Explanation

- In addition to closed intervals, let us consider open and semi-open ones.
- An open end will be then denoted by the negative number:
 - for example, (0.3, 0.5] is denoted as [-0.3, 0.5], and
 - the interval (0.3, 0.5) is denoted as [-0.3, -0.5].
- By considering all possible cases, one can show that:
 - for two intervals $A = [\underline{a}, \overline{a}]$ and $B = [\underline{B}, \overline{B}]$,
 - the range of possible values

$$\{\min(a,b) : a \in A, b \in B\}$$

- is indeed equal to

$$[abs min(\underline{a}, \underline{b}), abs min(\overline{a}, \overline{b})].$$

5. Our Explanation (cont-d)

• For example, for A = (0.3, 0.7] = [-0.3, 0.7] and B = [0.2, 0.6) = [0.2, -0.6], we have

$${\min(a,b): a \in A, b \in B} = [0,2,0.6) = [0.2,-0.6].$$

- Here indeed:
 - we have absmin(-0.3, 0.2) = 0.2 and
 - we have absmin(0.7, -0.6) = -0.6.
- Similarly, the range of possible values of $\max(a, b)$ forms the interval

[abs
$$\max(\underline{a}, \underline{b})$$
, abs $\max(\overline{a}, \overline{b})$].

• Thus, we get a natural interval explanation of the extended operations.

6. Main Reference

• S. Dick, R. Yager, and O. Yazdanbakhsh, "On Pythagorean and complex fuzzy set operations", *IEEE Transactions on Fuzzy Systems*, 2016, Vol. 24, No. 5, pp. 1009–1021.

Formulation of the...

Our Explanation

Main Reference

