Multi-Objective Optimization: Linear Combinations Do Not Cover Pareto Set, So What Does?

Cesar F. Gomez Guillen, Miguel A. Sepulveda, and Vladik Kreinovich

Department of Computer Science, University of Texas at El Paso
500 W. University, El Paso, Texas 79968, USA
cfgomezguil@miners.utep.edu, masepulveda@miners.utep.edu, vladik@utep.edu
1. Formulation of the problem

- In some practical situation, we have a clear objective: to optimize a known objective function $f(x)$ – e.g., profit for companies.
- Many effective algorithms are known for solving such well-defined optimization problems.
- Often, however, the problems are not so well-defined: there are several different objective functions $f_1(x), \ldots, f_n(x)$.
- Usually, we calibrate them so that the status quo state s (when we do not make any decision) corresponds to $f_i(s) = 0$.
- This way, we are only looking for alternatives x for which $f_i(x) \geq 0$ for all i.
- In such situations, we do not want alternatives x which are dominated by others, i.e., for which, for some y:
 - we have $f_i(x) \leq f_i(y)$ for all i and
 - we have $f_j(x) < f_j(y)$ for some j.

2. Formulation of the problem (cont-d)

- We thus want to generate the set P of all non-dominated alternatives, so that a human decision maker can make a final decision.
- This problem is known as *multi-objective optimization*.
- The set P is known as the *Pareto set*.
- There are many effective algorithms for solving traditional optimization problem.
- So, a natural idea is to reduce multi-objective optimization to several optimization ones.
- Namely, we select a continuous function $F(v_1, \ldots, v_n)$ which:
 - is (non-strictly) increasing relative to each of its inputs and
 - which does not change under permutations.
- Then, we optimize functions $F(c_1 \cdot f_1(x), \ldots, c_n \cdot f_n(x))$ corresponding to different $c_i \geq 0$.
3. Formulation of the problem (cont-d)

- It is also reasonable to require that:
 - the function F is *homogeneous*, i.e., that for all c and all v_i, we have:
 $$F(c \cdot v_1, \ldots, c \cdot v_n) = c \cdot F(v_1, \ldots, v_n),$$
 - if both the Pareto set and a point $p \in P$ are invariant under a permutation, the corresponding values c_i should be invariant too.

- Practitioners often use $F(v_1, \ldots) = \sum_i v_i$, which means considering linear combinations of objective functions.

- The problem is that:
 - if the set S of possible values of $(f_1(x), \ldots, f_n(x))$ is not convex,
 - optimizing linear combinations does not cover the whole Pareto set (an example is given later).

- So what shall we do?
4. A reasonably simple solution: use min instead the sum

- One can easily show that if we use \(F(v_1, \ldots) = \min(v_1, \ldots, v_n) \), then we do cover the whole Pareto set.

- Indeed, each point \(x_0 \in P \) is covered when we take \(c_i = 1/f_i(x_0) \).

- In this case, for \(c_i = 1/f_i(x_0) \), for the function \(g(x) \overset{\text{def}}{=} F(c_1 \cdot f_1(x), \ldots) \), we have \(g(x_0) = 1 \).

- However, for every other \(y \), we will have \(g(y) \leq 1 \) – otherwise \(y \) would dominate \(x_0 \).

- Of course, for any \(c > 0 \), the function \(c \cdot \min(v_1, \ldots) \) has the same property.
5. A natural mathematical question: are \(c \cdot \min \) the only functions with this property?

- Our answer is “yes”. Here is a proof for \(n = 2 \).
- Let us first prove that \(F(1, a) = F(1, 1) \) for all \(a > 1 \).
- Indeed, let us consider the Pareto set consisting of line segments

\[
(0, a) - (1, a) - p = (1 + \varepsilon, 1 + \varepsilon) - (a, 1) - (a, 0).
\]

- Both set \(P \) and the point \(p \) do not change when we swap \(v_1 \) and \(v_2 \).
- So we should have \(c_1 = c_2 \) for the values that lead to the maximum at \(p \).
- Since we have a maximum at \(p \), we get

\[
F(c_1 \cdot (1 + \varepsilon), c_1 \cdot (1 + \varepsilon)) \geq F(c_1 \cdot 1, c_1 \cdot a).
\]

- Hence due to homogeneity \(F(1 + \varepsilon, 1 + \varepsilon) \geq F(1, a) \).
- In the limit \(\varepsilon \to 0 \), we get \(F(1, 1) \geq F(1, a) \).
6. Are $c \cdot \min$ the only functions with this property?

- However, due to monotonicity, $F(1, 1) \leq F(1, a)$, so $F(1, a) = F(1, 1)$ for all $a > 1$.
- For any v, due to homogeneity, we have $F(v, v) = v \cdot F(1, 1) = c \cdot v$.
- Similarly for any $v_1 < v_2$, we have $F(v_1, v_2) = v_1 \cdot F(1, v_2/v_1)$.
- Since $v_2 > v_1$, we have $v_2/v_1 > 1$, so $F(1, v_2/v_1) = F(1, 1) = c$ and thus, $F(v_1, v_2) = c \cdot v_1$.
- Due to symmetry, for $v_1 > v_2$, we have $F(v_1, v_2) = F(v_2, v_1)$ and thus, $F(v_1, v_2) = c \cdot v_2$.
- In both cases, $F(v_1, v_2) = c \cdot \min(v_1, v_2)$.
- The statement is proven.
7. Acknowledgments

This work was supported in part by:

• National Science Foundation grants 1623190, HRD-1834620, HRD-2034030, and EAR-2225395;

• AT&T Fellowship in Information Technology;

• program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and

• a grant from the Hungarian National Research, Development and Innovation Office (NRDI).