# An Ancient Bankruptcy Solution Makes Economic Sense

Anh H. Ly<sup>1</sup>, Michael Zakharevich<sup>2</sup> Olga Kosheleva<sup>3</sup>, and Vladik Kreinovich<sup>3</sup>

<sup>1</sup>Banking University of Ho Chi Minh City, 56 Hoang Dieu 2 Quan Thu Duc, Thu Duc, Ho Chí Minh City, Vietnam <sup>2</sup>SeeCure Systems, Inc., 1040 Continentals Way # 12 Belmont, California 94002, USA, michael@seecure360.com <sup>3</sup>University of Texas at El Paso, El Paso, Texas, USA, USA olgak@utep.edu, vladik@utep.edu



#### 1. The Bankruptcy Problem: Reminder

- When a person or a company cannot pay all its obligation:
  - a bankruptcy is declared, and
  - the available funds are distributed among the claimants.
- There is not enough money to give, to each claimant, what he/she is owed.
- So, claimants will get less than what they are owed.
- How much less?
- What is a fair way to divide the available funds between the claimants?

The Bankruptcy... An Ancient Solution Examples Are Here, . . . Mystery Solved, ... Remaining Problem Analysis of the Problem Let Us Divide Equally, . Which Points of the No Matter What Our . . Home Page Title Page **>>** Page 2 of 37 Go Back Full Screen Close Quit

#### 2. An Ancient Solution

- The bankruptcy problem is known for many millennia:
  - since money became available and
  - people starting lending money to each other.
- Solutions to this problem have also been proposed for many millennia.
- One such ancient solution is described in the Talmud, an ancient commentary on the Jewish Bible.
- This solution is described in the Babylonian Talmud, in Ketubot 93a, Bava Metzia 2a, and Yevamot 38a.
- This solution is actually about a more general problem of several contracts which cannot be all fully fulfilled.
- Like many ancient texts containing mathematics, the Talmud does not contain an explicit algorithm.



#### 3. An Ancient Solution (cont-d)

- Instead, it contains four examples illustrating the main idea.
- In the first three examples, the three parties are owed the following amounts:
  - the first person is owed  $d_1 = 100$  monetary units,
  - the second person is owed  $d_2 = 200$  monetary units, and
  - the third person is owed  $d_3 = 300$  monetary units:

$$d_1 = 100, \quad d_2 = 200, \quad d_3 = 300.$$

An Ancient Solution Examples Are Here, . . Mystery Solved, ... Remaining Problem Analysis of the Problem Let Us Divide Equally, . Which Points of the . . . No Matter What Our . . Home Page Title Page **>>** Page 4 of 37 Go Back Full Screen Close Quit

The Bankruptcy...

#### 4. An Ancient Solution (cont-d)

• For three different available amounts E, the text describes the amounts  $e_1$ ,  $e_2$ , and  $e_3$  that each gets:

|     | $d_1 = 100$     | $d_2 = 200$     | $d_3 = 300$     |
|-----|-----------------|-----------------|-----------------|
| E   | $e_1$           | $e_2$           | $e_3$           |
| 100 | $33\frac{1}{3}$ | $33\frac{1}{3}$ | $33\frac{1}{3}$ |
| 200 | 50              | 75              | 75              |
| 300 | 50              | 100             | 150             |

• There is also a fourth example, formulated in a slightly different way – as dividing a disputed garment.



#### 5. An Ancient Solution (cont-d)

- In the bankruptcy terms, it can be described as follows: the owed amounts are:  $d_1 = 50$ ,  $d_2 = 100$ .
- The available amount E and the recommended division  $(e_1, e_2)$  are as follows:

|     | $d_1 = 50$ | $d_2 = 100$ |
|-----|------------|-------------|
| E   | $e_1$      | $e_2$       |
| 100 | 25         | 75          |



## 6. Examples Are Here, But What is a General Solution?

- In many other ancient mathematical texts, where the general algorithm is very clear from the examples.
- However, in this particular case, the general algorithm was unknown until 1985.
- Actually, many researchers came up with algorithms that:
  - explained *some* of these examples,
  - while claiming that the original ancient text must have contained some mistakes.



#### 7. Mystery Solved, Algorithm Is Reconstructed

- This problem intrigued Robert Aumann, later the Nobel Prize winner in Economics (2005).
- He came up with a reasonable general algorithm that explains the ancient solution.
- To explain this algorithm, we need to first start with the the case of two claimants.
- Without losing generality, let us assume that the first claimant has a smaller claim  $d_1 \leq d_2$ .
- The first case is when the overall amount E is small smaller that  $d_1$ .
- Then, the amount E is distributed equally between the claimants, so that each gets  $e_1 = e_2 = \frac{E}{2}$ .



- When the available amount E is between  $d_1$  and  $d_2$ , i.e., when  $d_1 \leq E \leq d_2$ , then:
  - the first claimant receives  $e_1 = \frac{d_1}{2}$ , and
  - the second claimant receives the remaining amount  $e_2 = E e_1$ .
- This policy continues until we reach the amount  $E = d_2$ , at which moment:
  - the first claimant receives the amount  $d_1 = \frac{d_1}{2}$  and
  - the second claimant receives  $e_2 = d_2 \frac{d_1}{2}$ .
- At this moment, after receiving the money, both claimants lose the same amount of money:

$$d_1 - e_1 = d_2 - e_2 = \frac{d_1}{2}.$$

The Bankruptcy...

An Ancient Solution

Examples Are Here, . . .

Examples Are Here, . . .

Mystery Solved, . . .
Remaining Problem

Analysis of the Problem

Let Us Divide Equally, .

Which Points of the . . .

No Matter What Our...

Home Page
Title Page





Page 9 of 37

Go Back

Full Screen

Close

Quit

- The third case is when E larger than  $d_2$  (but smaller than the overall amount of debt  $d_1 + d_2$ ).
- Then, the money is distributed in such a way that the losses remain equal, i.e., that

$$d_1 - e_1 = d_2 - e_2$$
 and  $e_1 + e_2 = E$ .

• From these two conditions, we get:

$$e_1 = \frac{E + d_1 - d_2}{2}, \quad e_2 = \frac{E - d_1 + d_2}{2}.$$

- The division between three (or more) claimants is then explained as the one for which:
  - for every two claimants,
  - the amounts given to them are distributed according to the above algorithm.



- This can be easily checked if we select,
  - for each pair (i, j)
  - only the overall amount  $E_{ij} = e_i + e_j$  allocated to claimants from this pair.
- As a result, for the pairs (1,2), (2,3), and (1,3), we get the following tables:

|                 | $d_1 = 100$     | $d_2 = 200$     |
|-----------------|-----------------|-----------------|
| $E_{12}$        | $e_1$           | $e_2$           |
| $66\frac{2}{3}$ | $33\frac{1}{3}$ | $33\frac{1}{3}$ |
| 125             | 50              | 75              |
| 150             | 50              | 100             |



|                 | $d_2 = 200$     | $d_3 = 300$     |
|-----------------|-----------------|-----------------|
| $E_{23}$        | $e_2$           | $e_3$           |
| $66\frac{2}{3}$ | $33\frac{1}{3}$ | $33\frac{1}{3}$ |
| 150             | 75              | 75              |
| 250             | 100             | 150             |

|          | $d_1 = 100$     | $d_3 = 300$     |
|----------|-----------------|-----------------|
| $E_{13}$ | $e_1$           | $e_3$           |
| 100      | $66\frac{2}{3}$ | $33\frac{1}{3}$ |
| 125      | 50              | 75              |
| 200      | 50              | 150             |



#### 12. Remaining Problem

- The algorithm has been reconstructed, great.
- We now know what the ancients proposed.
- However, based on the above description, it is still not clear *why* this solution was proposed.
- The above solution sounds rather arbitrary.
- To be more precise:
  - both idea of dividing the amount equally and dividing the losses equally make sense, but
  - how do we combine these two ideas?



#### 13. Remaining Problem (cont-d)

- And why in the region between  $E = \min(d_1, d_2)$  and  $E = \max(d_1, d_2)$ ,
  - the claimant with the smallest claim always gets half of his/her claim
  - while the second claimant gets more and more?
- How dow that fit with the Talmud's claim that the proposed division represents fairness?
- In this talk, we propose an economics-based explanation for the above solution.



#### 14. Analysis of the Problem

- At first glance, it may look like fairness means dividing the amount either equally.
- If everyone is equal, why should someone gets more than others?
- However, this is not necessarily a fair division.
- Suppose that two folks start with an equal amount of 400 dollars.
- They both decided to invest some money in the biomedical company that:
  - promised to use this money
  - to develop a new drug curing up-to-now un-curable disease.
- The 1st person invested \$200, the 2nd invested \$300.

An Ancient Solution Examples Are Here, . . . Mystery Solved.... Remaining Problem Analysis of the Problem Let Us Divide Equally, . Which Points of the No Matter What Our . . . Home Page Title Page **>>** Page 15 of 37 Go Back Full Screen Close Quit

The Bankruptcy...

#### 15. Analysis of the Problem (cont-d)

- After this, the first person has \$200 left and the second person has \$100 left.
- The company went bankrupt, and only \$300 remains in its account.
- If we divide this mount equally, both investors will get back the same amount of \$150.
- As a result:
  - the first person will have \$350 instead of the original \$400, while
  - the second person will have \$250 instead of the original \$400.



#### 16. Analysis of the Problem (cont-d)

- So, the first person loses only \$50, while the second person loses three times more: \$150; so,
  - the first person, who selfishly kept money to himself, gets more than
  - the altruistic second person who invested more in a noble case;
  - how is this fair?



## 17. Let Us Divide Equally, But With Respect to What Status Quo Point?

- If two people jointly find an amount of money, then fairness means dividing equally.
- If two people jointly contributed to some expenses, fairness means that they should split the expenses equally.
- In both cases, we have a natural status quo point  $(\widetilde{e}_1, \widetilde{e}_2)$ :
  - in the first case, we take  $(\widetilde{e}_1, \widetilde{e}_2) = (0, 0)$ , and
  - in the second case, we take  $(\widetilde{e}_1, \widetilde{e}_2) = (d_1, d_2)$ .
- Any change from the status quo should be divided equally, i.e., we should have  $e_1 \tilde{e}_1 = e_2 \tilde{e}_2$ .
- This idea comes from another Nobelist, John Nash.
- So, to apply this idea to the bankruptcy problem, we need to decide what is the status quo point here.

An Ancient Solution Examples Are Here, . . . Mystery Solved.... Remaining Problem Analysis of the Problem Let Us Divide Equally, . Which Points of the . . . No Matter What Our . . Home Page Title Page **>>** Page 18 of 37 Go Back Full Screen Close Quit

The Bankruptcy...

#### 18. Possible Ranges for Status Quo: Example

- Let us consider one of the above cases, when:
  - the first person is owed  $d_1 = 100$  monetary units,
  - the second person is owed  $d_2 = 200$  units, and
  - we have an amount  $E_{12} = 125$  units to distribute between these two claimants.
- Depending on how we distribute this amount, the first person may get different amounts.
- The best possible case for the 1st claimant is when he get all the money he is owed, i.e.,  $\overline{e}_1 = 100$  units.
- The worst possible case for the 1st claimant is when:
  - all the money goes to the 2nd person, and
  - the 1st gets nothing:  $\underline{e}_1 = 0$ .
- Thus, the status quo point for the first person is somewhere in the interval  $[\underline{e}_1, \overline{e}_1] = [0, 100]$ .



#### 19. Possible Ranges for Status Quo (cont-d)

- Similarly, the best possible case for the 2nd person is when the 2nd person gets all the money:  $\overline{e}_2 = 125$ .
- The worst possible case for the second person is when:
  - the first claimant gets everything he is owed i.e., all 100 units, and
  - the second person gets the remaining amount of  $e_2 = 125 100 25$  units.
- Thus, the status quo point for the second person is somewhere in the interval  $[\underline{e}_2, \overline{e}_2] = [25, 125]$ .
- Let us perform the same analysis in the general case.



## 20. What Are Possible Ranges for the Status Quo Point: General Case

- Without losing generality, let us assume that the 1st person is the one who is owed less, i.e., that  $d_1 \leq d_2$ .
- We will consider three different cases:
  - when the amount  $E_{12}$  does not exceed  $d_1$ :  $E_{12} \leq d_1$ ;
  - when  $E_{12}$  is between  $d_1$  and  $d_2$ :  $d_1 \leq E_{12} \leq E_2$ ,
  - and when  $E_{12}$  exceeds  $d_2$ :  $d_2 \le E_{12} \le d_1 + d_2$ .
- Let us consider these three cases one by one.



## 21. Case When the Overall Amount Does Not Exceed the Smallest Claim

- Let us first consider the case when  $E_{12} \leq d_1 \leq d_2$ .
- In this case, for the first person, the best possible case is when this person gets all the amount  $E_{12}$ :  $\overline{e}_1 = E_{12}$ .
- The worst possible case is when all the money goes to the 2nd claimant and the 1st gets nothing:  $\underline{e}_1 = 0$ .
- So, for the first person, the range of possible gains is  $[\underline{e}_1, \overline{e}_1] = [0, E_{12}].$
- For the second person, the best possible case is when this person gets all the amount  $E_{12}$ :  $\overline{e}_2 = E_{12}$ .
- The worst possible case is when all the money goes to the 1st claimant and the 2nd gets nothing:  $\underline{e}_2 = 0$ .
- So, for the second person, the range of possible gains is  $[\underline{e}_2, \overline{e}_2] = [0, E_{12}].$



## 22. Case When the Overall Amount Is in Between the Smaller and the Larger Claims

- Let us now consider the case when  $d_1 \leq E_{12} \leq d_2$ .
- In this case, for the 1st person, the best case is when he/she gets all the amount owed:  $\overline{e}_1 = d_1$ .
- The worst case is when all the money goes to the 2nd claimant and the 1st gets nothing:  $e_1 = 0$ .
- So, for the first person, the range of possible gains is

$$[\underline{e}_1, \overline{e}_1] = [0, d_1].$$



## 23. Case When the Overall Amount Is in Between the Smaller and the Larger Claims (cont-d)

- For the second person, the best possible case is when this person gets all the amount  $E_{12}$ :  $\overline{e}_2 = E_{12}$ .
- The worst possible case is when:
  - the first claimant gets all the money he is owed (i.e., the amount  $d_1$ ), and
  - the second person only gets the remaining amount

$$\underline{e}_2 = E_{12} - d_1.$$

• So, for the second person, the range of possible gains is  $[\underline{e}_2, \overline{e}_2] = [E_{12} - d_1, E_{12}].$ 



#### 24. Case When the Overall Amount Is Larger Than Both Claims

- Let us now consider the case when  $d_1 \leq d_2 \leq E_{12}$ .
- In this case, for the 1st person, the best case is when this person gets all the amount owed:  $\overline{e}_1 = d_1$ .
- The worst possible case is when:
  - the second person gets all the money it is owed, and
  - the first person only gets the remaining amount

$$\underline{e}_1 = E_{12} - d_2.$$

• So, for the first person, the range of possible gains is

$$[\underline{e}_1, \overline{e}_1] = [E_{12} - d_2, d_1].$$



### 25. Case When the Overall Amount Is Larger Than Both Claims (cont-d)

- For the second person, the best possible case is when this person gets all the amount it is owed:  $\overline{e}_2 = d_2$ .
- The worst possible case is when:
  - the first claimant gets all the money he is owed (i.e., the amount  $d_1$ ), and
  - the second person only gets the remaining amount

$$\underline{e}_2 = E_{12} - d_1.$$

• So, for the second person, the range of possible gains is  $[\underline{e}_2, \overline{e}_2] = [E_{12} - d_1, d_2]$ .



## 26. Which Points of the Corresponding Intervals Should We Select?

- In all three cases, for both claimants, we have an *interval* of possible values of the resulting gain.
- On each of these intervals:
  - we need to select a status quo point
  - that corresponds to the equivalent cost of this interval uncertainty.
- This is a particular case of the problem of what is the fair cost  $\overline{e}$  in the case of interval uncertainty  $[\underline{e}, \overline{e}]$ .
- This problem has been handled by yet another Nobelist, Leo Hurwicz.
- Namely, he proposed to select the value

$$\widetilde{e} = \alpha \cdot \overline{e} + (1 - \alpha) \cdot \underline{e}.$$

An Ancient Solution Examples Are Here, . . . Mystery Solved.... Remaining Problem Analysis of the Problem Let Us Divide Equally, . Which Points of the No Matter What Our . . Home Page Title Page **>>** Page 27 of 37 Go Back Full Screen Close Quit

The Bankruptcy...

# 27. Which Points of the Corresponding Intervals Should We Select (cont-d)

- Here,  $\alpha \in [0,1]$  describes the decision-maker's degree of optimism-pessimism.
- The value  $\alpha = 1$  describes a perfect optimist, who only takes into account the best possible scenario.
- The value  $\alpha = 0$  describes a complete pessimist, who only takes into account the worst possible scenario.
- Values  $\alpha$  strictly between 0 and 1 describe a realistic decision maker.
- Let us see what will happen if:
  - we take one of these solutions as a status-quo point
  - and consider a division fair if the differences between the gains  $e_i$  and the status quo are equal:

$$e_1 - \widetilde{e}_1 = e_2 - \widetilde{e}_2.$$



## 28. No Matter What Our Level of Optimism, We Get Exactly the Ancient Solution

- We will now show that in all the cases, we get exactly the ancient solution.
- So, we have a good economic explanation for this solution.
- To show this, let us consider all three possible cases:
  - case when  $E_{12} \leq d_1 \leq d_2$ ,
  - case when  $d_1 \leq E_{12} \leq d_2$ , and
  - case when  $d_1 \leq d_2 \leq E_{12}$ .



## 29. Case When the Overall Amount Does Not Exceed the Smallest Claim: General Formulas

• In this case,

$$\widetilde{e}_1 = \alpha \cdot \overline{e}_1 + (1 - \alpha) \cdot \underline{e}_1 = \alpha \cdot E_{12} + (1 - \alpha) \cdot 0 = \alpha \cdot E_{12}$$

$$\widetilde{e}_2 = \alpha \cdot \overline{e}_2 + (1 - \alpha) \cdot e_2 = \alpha \cdot E_{12} + (1 - \alpha) \cdot 0 = \alpha \cdot E_{12}.$$

- Thus, the fairness condition  $e_1 \tilde{e}_1 = e_2 \tilde{e}_2$  takes the form  $e_1 \alpha \cdot E_{12} = e_2 \alpha \cdot E_{12}$ , i.e., the form  $e_1 = e_2$ .
- So, in this case:
  - no matter what is the optimism-pessimism value  $\alpha$ ,
  - we divide the available amount  $E_{12}$  equally between the claimants:  $e_1 = e_2 = \frac{E_{12}}{2}$ .
- This is exactly what the ancient solution recommends in this case.



## 30. Case When the Overall Amount Does Not Exceed the Smallest Claim: Example

- Let us consider one of the above examples, when  $d_1 = 100$ ,  $d_2 = 200$ , and  $E_{12} = 66\frac{2}{3}$ .
- In this case, the above formulas recommend a solution in which  $e_1 = e_2 = 33\frac{1}{3}$ .
- For the optimistic case  $\alpha = 1$ , the status quo point is

$$\widetilde{e}_1 = \overline{e}_1 = 66\frac{2}{3}$$
 and  $\widetilde{e}_2 = \overline{e}_1 = 66\frac{2}{3}$ .

• Thus, the condition of fairness with respect to this optimistic status quo point is indeed satisfied:

$$e_1 - \widetilde{e}_1 = e_2 - \widetilde{e}_2 = -33\frac{1}{3}.$$



## Case When $d_1 \leq E_{12} \leq d_2$ : General Formulas

• In this case:

$$\widetilde{e}_1 = \alpha \cdot \overline{e}_1 + (1 - \alpha) \cdot \underline{e}_1 = \alpha \cdot d_1 + (1 - \alpha) \cdot 0 = \alpha \cdot d_1;$$

$$\widetilde{e}_2 = \alpha \cdot \overline{e}_2 + (1 - \alpha) \cdot e_2 = \alpha \cdot E_{12} + (1 - \alpha) \cdot (E_{12} - d_1) = E_{12} - (1 - \alpha) \cdot d_1$$

• So, the fairness condition  $e_1 - \widetilde{e}_1 = e_2 - \widetilde{e}_2$  becomes:

$$e_1 - \alpha \cdot d_1 = e_2 - E_{12} + (1 - \alpha) \cdot d_1 = e_2 - E_{12} + d_1 - \alpha \cdot d_1.$$

get  $e_1 = e_2 - E_{12} + d_1$ . • Substituting  $e_2 = E - e_1$  into this formula, we conclude

• Canceling the common term  $-\alpha \cdot d_1$  on both sides, we

- that  $e_1 = E_{12} e_1 E_{12} + d_1$ , i.e.,  $e_1 = -e_1 + d_1$ .
- Moving the term  $-e_1$  to the left-hand side, we get  $2e_1 =$  $d_1 \text{ and } e_1 = \frac{d_1}{2}.$
- The 2nd person gets the remaining amount  $e_2 = E_{12}$   $\frac{d_1}{2}$  – exactly what the ancient solution recommends.

The Bankruptcy... An Ancient Solution

Examples Are Here, . . .

Mystery Solved....

Remaining Problem Analysis of the Problem

Let Us Divide Equally,

Which Points of the . . .

No Matter What Our . .

Home Page Title Page

**>>** 

Page 32 of 37

Go Back

Full Screen

Close

Quit

#### 32. Case When $d_1 \leq E_{12} \leq d_2$ : Example

- Let us consider one of the above examples, when  $d_1 = 100$ ,  $d_2 = 200$ , and  $E_{12} = 125$ .
- In this case, the above formulas recommend a solution in which

$$e_1 = \frac{100}{2} = 50$$
 and  $e_2 = E_{12} - e_1 = 125 - 50 = 75$ .

- Here, the optimistic status quo point is  $\tilde{e}_1 = d_1 = 100$  and  $\tilde{e}_2 = E_{12} = 125$ .
- Thus, the condition of fairness with respect to this optimistic status quo point is indeed satisfied:

$$e_1 - \widetilde{e}_1 = 50 - 100 = -50, \quad e_2 - \widetilde{e}_2 = 75 - 125 = -50.$$



#### Case When the Overall Amount Is Larger 33. Than Both Claims: General Formulas

• In this case,

$$\widetilde{e}_1 = \alpha \cdot \overline{e}_1 + (1 - \alpha) \cdot \underline{e}_1 = \alpha \cdot d_1 + (1 - \alpha) \cdot (E_{12} - d_2) =$$

$$\alpha \cdot d_1 + (1 - \alpha) \cdot E_{12} - (1 - \alpha) \cdot d_2;$$

$$\widetilde{e}_2 = \alpha \cdot \overline{e}_2 + (1 - \alpha) \cdot e_2 = \alpha \cdot d_2 + (1 - \alpha) \cdot (E_{12} - d_1) =$$

$$\alpha \cdot d_2 + (1 - \alpha) \cdot E_{12} - (1 - \alpha) \cdot d_1.$$

• So, the fairness condition  $e_1 - \tilde{e}_1 = e_2 - \tilde{e}_2$  becomes:

$$e_1 - \alpha \cdot d_1 - (1 - \alpha) \cdot E_{12} + (1 - \alpha) \cdot d_2 =$$
  
 $e_2 - \alpha \cdot d_2 - (1 - \alpha) \cdot E_{12} + (1 - \alpha) \cdot d_1.$ 

• Canceling the common term  $-(1-\alpha) \cdot E_{12}$ , we get  $e_1 - \alpha \cdot d_1 + (1 - \alpha) \cdot d_2 = e_2 - \alpha \cdot d_2 + (1 - \alpha) \cdot d_1$  The Bankruptcy...

An Ancient Solution

Examples Are Here, . . .

Mystery Solved....

Remaining Problem

Analysis of the Problem

Let Us Divide Equally, . Which Points of the . . .

No Matter What Our . . .

Home Page

**>>** 

Title Page



Go Back

Page 34 of 37

Full Screen

Close

Quit

#### 34. Case When $d_2 < E_{12}$ (cont-d)

- Moving terms containing  $d_1$  and  $d_2$  to the right-hand side, we conclude that  $e_1 = e_2 + d_1 d_2$ .
- Substituting  $e_2 = E_{12} e_1$  into this formula, we get  $e_1 = E_{12} e_1 + d_1 e_2$ .
- Moving the term  $-e_1$  to the left-hand side, we get  $2e_1 = E_{12} + d_1 e_2$  and  $e_1 = \frac{E_{12} + d_1 d_2}{2}$ .
- The second person gets the remaining amount

$$e_2 = E_{12} - \frac{E_{12} + d_1 - d_2}{2} = \frac{E_{12} - d_1 + d_2}{2}.$$

• This too is exactly what the ancient solution recommends in this case.



• Let us consider one of the above examples, when

$$d_1 = 50$$
,  $d_2 = 100$ , and  $E_{12} = 100$ .

• In this case, the above formulas recommend a solution in which

$$e_1 = \frac{100 + 50 - 100}{2} = 25$$
 and  $e_2 = \frac{100 - 50 + 100}{2} = 75$ .

- Here, the optimistic status quo point is  $\tilde{e}_1 = d_1 = 50$  and  $\tilde{e}_2 = d_2 = 100$ .
- Thus, the condition of fairness with respect to this optimistic status quo point is indeed satisfied:

$$e_1 - \widetilde{e}_1 = 25 - 50 = -25, \quad e_2 - \widetilde{e}_2 = 75 - 100 = -25.$$

The Bankruptcy...

An Ancient Solution

Examples Are Here, . . .

Mystery Solved....

Remaining Problem

Analysis of the Problem

Let Us Divide Equally, .

Which Points of the...

No Matter What Our..

Home Page

Title Page





Page 36 of 37

Go Back

Full Screen

Close

Quit

#### 36. Acknowledgments

This work was supported in part by the National Science Foundation grant HRD-1242122 (Cyber-ShARE Center).

The Bankruptcy... An Ancient Solution Examples Are Here. . . . Mystery Solved, . . . Remaining Problem Analysis of the Problem Let Us Divide Equally, . . Which Points of the . . . No Matter What Our . . Home Page Title Page 44 Page 37 of 37 Go Back Full Screen Close

Quit