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1. Problems That We Solve in Real Life

• In many practical situations, we need to maximize or
minimize some objective function.

• When we select a plan for a company, we want to max-
imize profit.

• When we select a route for a car, we want to minimize
travel time.

• When we select medical treatment, we want to mini-
mize side effects, etc.

• In all these situations, there are some constraints.

• Pollution generated by a chemical plant cannot exceed
the legal limits.

• A car cannot exceed the speed limit – unless it is an
emergency vehicle.
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2. Real-Life Problems (cont-d)

• A medical treatment must satisfy a certain rate of cure,
etc.

• In general, there are several parameters x1, . . . , xn pos-
sible alternatives.

• The objective function f(x1, . . . , xn) depends on all
these parameters.

• A constraints means that some quantity g cannot ex-
ceed the corresponding threshold t.

• This quantity also depends on the parameters
x1, . . . , xn: g = g(x1, . . . , xn).

• Thus, a constraint has the form g(x1, . . . , xn) ≤ t.

• In general, we have a constraint optimization problem:
maximize f(x1, . . . , xn) under constraints

g1(x1, . . . , xn) ≤ t1, . . . , gm(x1, . . . , xn) ≤ tm.
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3. Linearization Is Often Possible

• In many practical situations, we know a reasonable
good solution x(0) = (x

(0)
1 , . . . , x

(0)
n ).

• This usually means that the unknown optimal solution
x = (x1, . . . , xn) is close to x(0).

• In other words, the differences vi
def
= xi−x(0)i are small.

• In physics and engineering, if the quantities vi are
small, we can safely ignore terms quadratic in vi.

• For example, if vi ≈ 10%, then v2i ≈ 1%� 10%.
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4. Linearization (cont-d)

• Thus, we can, e.g.:

– take the expression

f(x1, . . . , xn) = f
(
x
(0)
1 + v1, . . . , x

(0)
n + vn

)
;

– expand it in Taylor series and keep only linear
terms in this expansion:

f(x1, . . . , xn) ≈ y(0) +
n∑

j=1

ci · vi,

where y(0)
def
= f

(
x
(0)
1 , . . . , x(0)n

)
and cj

def
=

∂f

∂xj
.

• Maximizing this expression for f(x1, . . . , xn) is equiva-

lent to maximizing a linear function
n∑

j=1

ci · vi.
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5. Linearization (cont-d)

• By applying a similar linearization to gi(x1, . . . , xn) =

gi

(
x
(0)
1 + v1, . . . , x

(0)
n + vn

)
, we conclude that

gi(x1, . . . , xn) ≈ gi0 +
m∑
j=1

aij · vj,

where gi0
def
= gi

(
x
(0)
1 , . . . , x(0)n

)
and aij

def
=

∂gi
∂xj

.

• Thus, each constraint gi(x1, . . . , xn) ≤ ti takes the form
n∑

j=1

aij · vj ≤ bi, where bi
def
= ti − gi0.

• Thus, we arrive at the problem of maximizing a linear

function
n∑

j=1

ci·vi under linear constraints
n∑

j=1

aij·vj ≤ bi.

• Such problems are known as linear programming.
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6. Why the Name?

• Why linear – clear, but why programming?

• The answer is simple: in the late 1940s, programming
was all the range.

• If you called it programming, your changes of getting
a grant drastically increased.

• So we have dynamic programming, quadratic program-
ming, etc.

• All this has nothing to do with programming.

• It is somewhat like now, when many folks processing
kilobytes of data call it big data :-(
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7. An Example of a Linear Programming Problem

• One of the first examples of linear programming was
developing meals plan for jails.

• In this case, v1, . . . , vn are amounts of different prod-
ucts: beef, chicken, beans, bread, milk, etc.

• The objective is to minimize cost
n∑

j=1

cj · vj.

• The main constraint is that the overall amount of calo-

ries should be sufficient:
n∑

j=1

a1j · vj ≥ b1.

• Here, a1j is calories per pound for the j-th product.

• We must also make sure that the folks get:

– enough proteins b2,

– enough of different vitamins b3, . . .,

– enough of different micro-elements bi, etc.
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8. Jail Example: Comment

• The solution, by the way, was indeed cheap.

• However, I would not advise students to use it: it does
not take taste into account :-(



Problems That We . . .

Linearization Is Often . . .

An Example of a . . .

How to Solve Linear . . .

Khachiyan’s Algorithm . . .

Karmarkar’s Algorithm . . .

Constraint . . .

Sergei Chubanov’s Idea

Why Chubanov’s . . .

Home Page

Title Page

JJ II

J I

Page 10 of 32

Go Back

Full Screen

Close

Quit

9. How to Solve Linear Programming Problems

• Since linear programming problems are ubiquitous,
people have been trying to solve them.

• It started with a simple mathematical analysis.

• Each constraint
n∑

j=1

aij ·vj ≤ bi determines a half-space.

• A half-space H is a convex set: if h ∈ H and h′ ∈ H,
then the whole straight line segment is in H:

α · h+ (1− α) · h′ ∈ H for all α ∈ (0, 1).

• The set of all v = (v1, . . . , vn) that satisfy all the con-
straints is an intersection of several half-spaces.

• This intersection is thus also convex: a convex poly-
tope.

• On each segment, a linear function is linear.
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10. Solving Linear Programming (cont-d)

• The maximum of a linear function of a segment is at-
tained at the endpoints.

• So, in our problem, the maximum of a linear function
is attained at one of the vertices.

• A vertex is where n of m constraints are equalities.

• Once we know which constraints are equalities, to find
v, we solve a system of linear equations

∑
aij · vj = bi.

• There are efficient algorithms for solving such systems;
e.g., Gauss elimination takes time O(n3).

• Problem: there are exponentially many size-n subsets.

• Idea: start with any vertex, and then replace one of the
constraints so as to increase the objective function.

• This idea – known as simplex method – leads to a very
efficient algorithm which is still used.
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11. Simplex Method (cont-d)

• Its authors, Leonid Kantorovich and Tjalling C. Koop-
mans, received 1975 Nobel Prize in Economics.

• Problem: sometimes, this algorithm requires exponen-
tial time.

• Interestingly, its average computation time is good.

• However, this good time assumes that all the coeffi-
cients aij, bi, and cj are independent.

• In contrast, in practice, they are often strongly corre-
lated.

• As a result, exponential time occurs frequently in prac-
tice.
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12. Can We Reduce Computation Time?

• The authors of the notion of NP-hardness thought that
linear programming is NP-hard.

• The theoretical breakthrough was achieved in 1979 by
Leonid Khachiyan’s polynomial-time algorithm.

• His main idea was to enclose the convex polytope P by
an ellipsoid.

• Why ellipsoids?

• The class of problems remains the same if we have a

linear change of variables: vj → v′j =
n∑

j′=1

djj′ · vj.

• The simplest domain is a sphere.

• If we apply different linear transformations to a sphere,
we get ellipsoids.
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13. Khachiyan’s Algorithm and Beyond

• We take a known point p satisfying all the constraints.

• Then, we divide the ellipsoid in two by a hyperplane
containing p and ⊥ c = (c1, . . . , cn).

• In the upper half-ellipsoid – where the values of the
objective function are higher.

• So, we enclosed this half-ellipsoid a (smaller) ellipsoid,
etc.

• While Khachiyan’s algorithm was theoretically good,
in practice, it was very inefficient.

• In 1984, Narendra Karmarkar proposed a practically
efficient version of this algorithm.
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14. Karmarkar’s Algorithm (cont-d)

• His idea is that the class of ellipsoids is also invariant
with respect to projective transformations.

• Examples are projections producing a 2-D map of a
3-D Earth.

• So, if we know a point in P , we first perform a projec-
tive transformation that makes P the ellipsoid’s center.

• Only then we bisect.

• Karmarkar’s algorithm – and its improvements – are
still widely used in practice.

• But it still takes too long.
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15. Why Cannot We Decrease Computation Time
by Parallelization

• When it takes too long for a person to perform a task,
this person asks for help.

• When several people work on different parts of the task,
the task gets done faster.

• Similarly, many computations become faster if we use
several processors working in parallel.

• Unfortunately, this idea does not work for linear pro-
gramming.

• It has been proven that linear programming is the
worst possible problem for parallelization.

• Such problems are known as P-hard.

• So, we cannot just parallelize the existing algorithms:
we need new algorithms to speed up computations.
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16. Let Us Go Back to Constraint Satisfaction

• To find out what to do let us go back and consider
constraint satisfaction in general.

• In real life, we often have many constraints that we
want to be satisfied.

• For example, in economics, we want:

– inflation not larger than some reasonably small
threshold,

– unemployment not larger than some small number,

– growth larger than some minimal amount, etc.

• In practice, several of these constraints are usually not
satisfied.

• So, what do we do?

• We select a constraint that is the farther from satisfac-
tion, and concentrate on it.
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17. Constraint Satisfaction (cont-d)

• For example, if inflation is high, we decrease the money
supply.

• Then, inflation goes down, but unemployment goes up
and growth stagnates.

• If stagnation becomes the main issue, we concentrate
on growth and stimulate economy, etc.

• The same strategy is often used in general:

• We start with some alternative v(0) – which, in general,
does not satisfy all the constraints.

• Then, we pick a constraint C.

• We find an alternative v(1) which is the closest to v(0)

among those that satisfy this constraint:

d(v(1), v(0)) = min
x∈C

d(v, v(0)).
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18. Constraint Satisfaction (cont-d)

• After that, we pick another constraint C ′.

• We find an alternative v(2) which is the closest to v(1)

among those that satisfy this constraint:

d(v(2), v(1)) = min
x∈C ′

d(v, v(1)), etc.

• In many cases, this process converges either in finitely
many steps or in the limit.

• As a result, we get an alternative v that satisfies all
the constraints.

• Problem: convergence is often slow.

• For example, for linear programming, this often re-
quires exponential time.
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19. Sergei Chubanov’s Idea

• We want to have gi(x1, . . . , xn) ≤ ti for all i.

• If all these inequalities hold, then, for any αi ≥ 0, we
have g(x1, . . . , xn) ≤ t, where

g(x1, . . . , xn) =
m∑
i=1

αi ·gi(x1, . . . , xn) and t =
m∑
i=1

αi ·ti.

• These new constraints are known as derivative con-
straints.

• Sergei Chubanov’s idea: use general idea, but:

– instead of cycling through original constraints,

– let us generate new derivative constraints every
time,

– here, αi selected so as to speed up convergence.
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20. Chubanov’s Idea (cont-d)

• Chubanov has shown that:

– by appropriately selecting derivative constraints,

– we can get a polynomial-time algorithm.

• To find αi, we – approximately – solve an optimization
problem on each step.

• This is rather technical, not easy to explain.

• But what is easy to explain is why this often drastically
speed up convergence.

• Suppose that we want to satisfy two constraints

y ≤ ε · x and − y ≤ ε · x for some small ε > 0.

• Let us start with a point (−1, 0).



Problems That We . . .

Linearization Is Often . . .

An Example of a . . .

How to Solve Linear . . .

Khachiyan’s Algorithm . . .

Karmarkar’s Algorithm . . .

Constraint . . .

Sergei Chubanov’s Idea

Why Chubanov’s . . .

Home Page

Title Page

JJ II

J I

Page 22 of 32

Go Back

Full Screen

Close

Quit

21. Chubanov’s Idea: Example
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In the traditional constraint satisfaction algorithm, we first
“project” onto one of the constraints:
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22. Example (cont-d)

Then we project onto another constraint:
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Then onto another one, etc.:
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23. Example (cont-d)

• For small ε, in the traditional approach, we get a very
slow convergence to the desired area.

• In Chubanov’s approach, we come up with a derivative
constraint 0 ≤ x:
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• The corresponding projection bring us immediately
into a point (0, 0) satisfying both constraints:
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24. Example (cont-d)

The corresponding projection bring us immediately into a
point (0, 0) satisfying both constraints:
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25. Why Chubanov’s Algorithm Works? Why
Other Algorithms Work?

• For LP, there are symmetries behind efficient algo-
rithms.

• This makes sense.

• Indeed, let us assume that there are natural symme-
tries T on the set of alternatives A.

• In this case:

– alternatives are algorithms, and

– symmetries are, e.g., linear transformations that
keep the problem unchanged.

• On the set A, we have a preference relation �.

• This relation should be reflexive and transitive – i.e.,
it should be a (partial) pre-order.
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26. Why Algorithms Work (cont-d)

• The relation � should be T -invariant: if a � a′, then
T (a) � T (a′).

• If several alternatives are the best, this means that we
can use this non-uniqueness to optimize something else.

• For example:

– if several algorithms have the same worst-case com-
plexity w,

– we can select the one with the best average-time t.

• In other words, we will use a new preference relation:

a �new a
′ ⇔ (w(a′) < w(a)∨(w(a′) = w(a) & t(a′) < t(a)).

• If we still have several best alternatives, we can opti-
mize something else, etc.

• At the end, we get a final preference relation for which
only one optimal alternative is the best.
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27. Why Algorithms Work (cont-d)

• One can prove that this optimal alternative aopt is itself
T -invariant.

• Indeed, aopt is better than any other: a � aopt.

• In particular, for each a, we have T−1(a) � aopt.

• Since � is T -invariant, we conclude that

T (T−1(a)) = a � T (aopt) for all a.

• Thus, T (aopt) is also optimal.

• However, since the preference relation is final, there is
only one optimal alternative, thus T (aopt) = aopt.
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28. Back to Chubanov’s Algorithm

• From this viewpoint:

– if it turned out that Chubanov’s algorithm is in-
variant relative to some natural symmetries,

– this will be a good indication that it is indeed op-
timal in some sense.

• Let us look at the above example:

– constraints y ≤ ε · x and −y ≤ ε · x with

– initial approximation x(0) = −1 and y(0) = 0.
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29. Chubanov’s Algorithm (cont-d)

• This configuration is invariant with respect to y → −y.

• However, in the traditional constraint satisfaction al-
gorithm, this symmetry is violated:

– we either start with the first constraint,

– or we start with the second constraint.

• In Chubanov’s algorithm, instead, we find αi ≥ 0 to
form a symmetric derivative constraint:

α1 · y + α2 · (−y) ≤ α1 · ε · x+ α2 · ε · x.

• This constraint is invariant w.r.t. y → −y if and only
if α1 = α2.

• Then, we get 0 ≤ 2αi · ε · x, i.e., 0 ≤ x.
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30. Chubanov’s Algorithm (cont-d)
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The closest point satisfying this derivative constraint is
(0, 0) – so Chubanov’s algorithm is symmetric!
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