Selecting the Most Representative Sample is NP-Hard: Need for Expert (Fuzzy) Knowledge

J. Esteban Gamez¹, François Modave¹, and Olga Kosheleva² Departments of ¹Computer Science and ²Teacher Education University of Texas, El Paso, TX 79968, USA contact email olgak@utep.edu

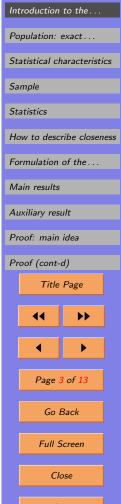
Introduction to the . . . Population: exact . . . Statistical characteristics Sample Statistics How to describe closeness Formulation of the . . . Main results Auxiliary result Proof: main idea Proof (cont-d) Page 1 of 13 Go Back Full Screen Close

1. Outline

- One of the main applications of fuzzy is to formalize the notions of "typical", "representative", etc.
- The main idea behind fuzzy: formalize expert knowledge expressed by words from natural language.
- In this talk, we show that
 - if we do not use this knowledge, i.e., if we only use the data,
 - then selecting the most representative sample becomes computationally difficult (NP-hard).
- Thus, the need to find such samples in reasonable time justifies the use of fuzzy techniques.

2. Introduction to the problem

- In practice: the population is often large, so we analyze a sample.
- Examples: poll, educational survey.
- *Idea:* the more "representative" the sample, the larger our confidence in the statistical results.
- Requirement: a representative sample should have the same averages as the population.
- Example: the same average age, average income, etc.
- Additional requirement: the sample should exhibit the same variety as the population.
- Example: the sample should include both poorer and reacher people.
- Formalization: a representative sample should have the same variance as the population.



3. Population: exact description

By a *population*, we mean a tuple

$$p \stackrel{\text{def}}{=} \langle N, k, \{x_{j,i}\} \rangle,$$

where:

- N is an integer; this integer will be called the population size;
- k is an integer; this integer is called the *number of* characteristics;
- $x_{j,i}$ $(1 \le j \le k, 1 \le i \le N)$ are real numbers;
- the real number $x_{j,i}$ will be called the *value* of the *j*-th characteristic for the *i*-th object.

Population: exact... Statistical characteristics Sample Statistics How to describe closeness Formulation of the . . . Main results Auxiliary result Proof: main idea Proof (cont-d) Title Page Page 4 of 13 Go Back Full Screen Close

Introduction to the . . .

4. Statistical characteristics

- Let $p = \langle N, k, \{x_{j,i}\} \rangle$ be a population, and let j be an integer from 1 to k.
- By the population mean E_j of the j-th characteristic, we mean the value $E_j = \frac{1}{N} \cdot \sum_{i=1}^{N} x_{j,i}$.
- ullet By the population variance V_j of the j-th characteristic, we mean the value

$$V_j = \frac{1}{N} \cdot \sum_{i=1}^{N} (x_{j,i} - E_j)^2.$$

• For every integer $d \geq 1$, by the central moment $M_j^{(2d)}$ of order 2d of the j-th characteristic, we mean the value

$$M_j^{(2d)} = \frac{1}{N} \cdot \sum_{i=1}^{N} (x_{j,i} - E_j)^{2d}.$$

5. Sample

- \bullet Let N be a population size.
- By a *sample*, we mean a non-empty subset $I \subseteq \{1, 2, ..., N\}$.
- For every sample I, by its size, we mean the number of elements in I.
- By the sample mean $E_j(I)$ of the j-th characteristic, we mean the value $E_j(I) = \frac{1}{n} \cdot \sum_{i \in I} x_{j,i}$.
- By the sample variance $V_j(I)$ of the j-th characteristic, we mean the value $V_j(I) = \frac{1}{n} \cdot \sum_{i \in I} (x_{j,i} E_j(I))^2$.
- For every $d \ge 1$, by the sample central moment $M_j^{(2d)}(I)$ of order 2d of the j-th characteristic, we mean the value

$$M_j^{(2d)}(I) = \frac{1}{n} \cdot \sum_{i \in I} (x_{j,i} - E_j(I))^{2d}.$$

Introduction to the...

Population: exact...

Statistical characteristics

Sample

Statistics

How to describe closeness

Main results

Auxiliary result

Formulation of the . . .

Proof: main idea
Proof (cont-d)

Title Page

Page 6 of 13

Go Back

Full Screen

CI

Close

6. Statistics

- Let $p = \langle N, k, \{x_{j,i}\} \rangle$ be a population, and let I be a sample.
- By an *E-statistics tuple* corresponding to p, we mean a tuple $t^{(1)} \stackrel{\text{def}}{=} (E_1, \dots, E_k)$.
- By an *E-statistics tuple* corresponding to I, we mean a tuple $t^{(1)}(I) \stackrel{\text{def}}{=} (E_1(I), \dots, E_k(I))$.
- By an (E, V)-statistics tuple corresponding to p, we mean a tuple $t^{(2)} \stackrel{\text{def}}{=} (E_1, \dots, E_k, V_1, \dots, V_k)$.
- By an (E, V)-statistics tuple corresponding to I, we mean a tuple $t^{(2)}(I) \stackrel{\text{def}}{=} (E_1(I), \dots, E_k(I), V_1(I), \dots, V_k(I))$.
- For every integer $d \ge 1$, we can similarly define a statistics tuple of order 2d.

Introduction to the . . . Population: exact . . . Statistical characteristics Sample Statistics How to describe closeness Formulation of the . . . Main results Auxiliary result Proof: main idea Proof (cont-d) Title Page **>>** Page 7 of 13 Go Back Full Screen Close

7. How to describe closeness

- By a distance function, we mean a mapping ρ that maps tuples t and t' into a real value $\rho(t,t')$ s.t.
 - $\rho(t,t) = 0$ for all tuples t and
 - $\rho(t, t') > 0$ for all $t \neq t'$.
- Example: Euclidean metric between the tuples $t = (t_1, t_2, ...)$ and $t' = (t'_1, t'_2, ...)$:

$$\rho(t,t') = \sqrt{\sum_{j} (t_j - t'_j)^2}.$$

8. Formulation of the problem

- Let ρ be a distance function.
- *E-sample selection problem* corresponding to ρ :
 - Given:
 - * a population $p = \langle N, k, \{x_{j,i}\} \rangle$, and
 - * an integer n < N.
 - Find: a sample $I \subseteq \{1, ..., N\}$ of size n for which the distance $\rho(t^{(1)}(I), t^{(1)})$ is the smallest possible.
- (E, V)-sample selection problem corresponding to ρ :
 - Given:
 - * a population $p = \langle N, k, \{x_{j,i}\} \rangle$, and
 - * an integer n < N.
 - Find: a sample $I \subseteq \{1, ..., N\}$ of size n for which the distance $\rho(t^{(2)}(I), t^{(2)})$ is the smallest possible.

Population: exact . . . Statistical characteristics Sample Statistics How to describe closeness Formulation of the . . . Main results Auxiliary result Proof: main idea Proof (cont-d) Title Page **>>** Page 9 of 13 Go Back Full Screen Close

Introduction to the . . .

9. Main results

- For every distance function ρ , the corresponding Esample selection problem is NP-hard.
- For every distance function ρ , the corresponding (E, V)sample selection problem is NP-hard.
- For every distance function ρ and for every $d \geq 1$, the (2d)-th order sample selection problem is NP-hard.

10. Auxiliary result

- In our proofs: we considered the case when the desired sample contains half of the original population.
- In practice: samples usually form a much smaller portion of the population.
- A natural question:
 - $\text{ fix } 2P \gg 2$, and
 - look for samples which constitute the (2P)-th part of the original population.
- Result: the resulting problems of selecting the most representative sample are still NP-hard.

11. Proof: main idea

- Reminder: NP-hard means that we can reduce every problem from a certain class NP to this one.
- *Usual proof:* reduce a known NP-hard problem to our problem.
- Why this works: transitivity of reduction.
- Known NP-hard problem: subset sum problem
 - given: positive integers s_1, \ldots, s_m ,
 - find: $\varepsilon_i \in \{-1, 1\}$ for which $\sum_{i=1}^{m} \varepsilon_i \cdot s_i = 0$.
- Reduction: N = 2n, k = 2, n = m, and:
 - $x_{1,i} = s_i$ and $x_{1,m+i} = -s_i$ for all i = 1, ..., m;
 - $x_{2,i} = x_{2,m+i} = 2^i$ for all $i = 1, \dots, m$.
- We will show: $\rho(t(I), t) = 0 \Leftrightarrow$ the original instance of the subset sum problem has a solution.

12. Proof (cont-d)

- Reminder: $x_{1,i} = s_i$ and $x_{1,m+i} = -s_i$ for $i = 1, \ldots, m$.
- Reminder: $x_{2,i} = x_{2,m+i} = 2^i$ for i = 1, ..., m.
- Population as a whole: $E_1 = 0$ and $E_2 = \frac{2 + 2^2 + \ldots + 2^m}{m}$.
- Since |I| = m, for $E_2(I) = E_2$ to be true, we must have $\sum_{i \in I} x_{2,i} = 2 + 2^2 + \ldots + 2^m$.
- All terms in RHS are divisible by 4 except for 2.
- All $x_{2,i}$ are divisible by 4 except for $x_{2,1}$ and $x_{2,m+1}$, so I must have exactly one of them.
- Similarly, I must have exactly one of i and m + i.
- So, corr. value $x_{1,j(i)}$ is $\varepsilon_i \cdot s_i$ for some $\varepsilon_i \in \{-1,1\}$.
- Thus, $E_1(I) = E_1 = 0$ means that $\sum_{i=1}^m \varepsilon_i \cdot s_i = 0$. QED.

Outline

Introduction to the...

Population: exact...

Statistical characteristics

Sample

Statistics

How to describe closeness Formulation of the...

Main results

Auxiliary result

Proof: main idea

Proof (cont-d)

Title Page

•

Page 13 of 13

Go Back

Full Screen

Close

Quit