Towards More Adequate Representation of Uncertainty: From Intervals to Set Intervals, with the Possible Addition of Probabilities and Certainty Degrees

J. T. Yao¹, Y. Y. Yao¹, V. Kreinovich², P. Pinheiro da Silva², S. A. Starks², G. Xiang², and H. T. Nguyen³

¹Department of Computer Science, University of Regina, Saskatchewan, Canada ²NASA Pan-American Center for Earth and Environmental Studies University of Texas, El Paso, TX 79968, USA ³Department of Mathematical Sciences New Mexico State University Las Cruces, NM 88003, USA contact email vladik@utep.edu

Need for Set Intervals Need for Set . . . Elementary Set . . . How to Get Exact Set Intermediate Value Fuzzy Sets Interval-Valued Fuzzy... Solution Probabilistic Case: In Similar Idea for Sets Acknowledgments -Page 1 of 12 Go Back Full Screen Close Quit

1. Need for Set Intervals

- *Ideal case*: complete knowledge.
- We are interested in: properties P_i such as "high fever", "headache", etc.
- Complete: we know the exact set S_i of all the objects that satisfy each property P_i .
- In practice, we usually only have partial knowledge:
 - the set \underline{S}_i of all the objects about which we know that P_i holds, and
 - the set \overline{S}_i about which we know that P_i may hold (i.e., equivalently, that we have not yet excluded the possibility of P_i).
- Set interval: the only information about the actual (unknown) set $S_i = \{x : P_i(x)\}$ is that $\underline{S}_i \subseteq S_i \subseteq \overline{S}_i$, i.e., that

$$S_i \in \mathbf{S}_i = [\underline{S}_i, \overline{S}_i] \stackrel{\text{def}}{=} \{S_i : \underline{S}_i \subseteq S_i \subseteq \overline{S}_i\}.$$

2. Need for Set Operations with Set Intervals

- Main problem:
 - we have some information about the original properties P_i ;
 - we would like to describe the set $S = \{x : P(x)\}$ of all the values that satisfy some combination $P \stackrel{\text{def}}{=} f(P_1, \dots, P_n)$.
- Example (informal): flu \leftrightarrow high fever and headache and not rash.
- Example (formal): $f(P_1, P_2, P_3) = P_1 \& P_2 \& \neg P_3$.
- *Ideal case:* we know the exact sets $S_i = \{x : P_i(x)\}.$
- Solution:
 - $-f(S_1,\ldots,S_n)$ is composition of union, intersection, and complement;
 - apply the corresponding set operation, step-by-step, to the known sets S_i .
- General case: describe the class S of all possible sets S corresponding to different $S_i \in \mathbf{S}_i$:

$$\mathcal{S} \stackrel{\text{def}}{=} \{ f(S_1, \dots, S_n) : S_1 \in \mathbf{S}_1, \dots, S_n \in \mathbf{S}_n \}.$$

Need for Set Intervals

Need for Set . . .

Elementary Set . . .

How to Get Exact Set . .

Intermediate Value . . .

Fuzzy Sets

Interval-Valued Fuzzy...

Solution

Probabilistic Case: In . . . Similar Idea for Sets

Acknowledgments

Title Page

Page 3 of 12

Go Back

Full Screen

Close

3. Elementary Set Operations and Their Use

- Simplest case: n = 2 and $f(P_1, P_2)$ is an elementary set operation (union, intersection, complement).
- Useful property: elementary set operations are monotonic in \subseteq .
- For these operations, formulas for estimating **S** are known:

- General case: idea (similar to interval computations)
 - parse the expression $f(S_1, \ldots, S_n)$;
 - replace each elementary set operation by the corresponding operation with interval sets.
- Result: we get an enclosure for $S = [\underline{S}, \overline{S}]$.
- *Problem:* we may get excess width.
- Example: for $f(S_1) = S_1 \cup -S_1$, $S_1 = [\emptyset, U]$.
 - actual range: $\mathbf{S} = \{U\};$
 - enclosure: $-\mathbf{S_1} = [\emptyset, U]$, so $\mathbf{S_1} \cup -\mathbf{S_1} = [\emptyset, U] \cup [\emptyset, U] = [\emptyset, U]$.

Need for Set Intervals

Need for Set . . .

Elementary Set . . .

How to Get Exact Set...

Intermediate Value...

Fuzzv Sets

Interval-Valued Fuzzy . .

Solution

Probabilistic Case: In . . . Similar Idea for Sets

Acknowledgments

Title Page

Page 4 of 12

Go Back

Full Screen

Close

How to Get Exact Set Range? How Difficult Is It?

- Problem: in general, set operations such as $S_1 \cup -S_1$ are not \subseteq -monotonic.
- Solution for computing \overline{S} :
 - represent $f(S_1,\ldots,S_n)$ in a canonical DNF form

$$(S_1 \cap -S_2 \cap \ldots \cap S_n) \cup (\ldots) \cup \ldots$$

- apply straightforward interval computations:

$$(\overline{S}_1 \cap -\underline{S}_2 \cap \ldots \cap \overline{S}_n) \cup (\ldots) \cup \ldots$$

- Proof: each element from each conjunction $\overline{S}_1 \cap -\underline{S}_2 \cap \ldots \cap \overline{S}_n$ is possible.
- Example: $S_1 \triangle S_2 = (S_1 \cap -S_2) \cup (-S_1 \cap S_2)$, so

$$\overline{S} = (\overline{S}_1 \cap -\underline{S}_2) \cup (-\underline{S}_1 \cap \overline{S}_2).$$

- Solution for computing \underline{S} : use $\underline{S} = -(\overline{-S})$, i.e., use CNF.
- Problem: turning into DNF or CNF requires exponential time.
- Comment: the problem of checking whether $\emptyset \in f(\mathbf{S}_1, \dots, \mathbf{S}_n)$ is NP-hard.

Need for Set Intervals Need for Set . . . Elementary Set . . . How to Get Exact Set . . . Intermediate Value . . . Fuzzy Sets Interval-Valued Fuzzv... Solution Probabilistic Case: In . . . Similar Idea for Sets Acknowledgments

Title Page

Go Back

Full Screen

Close

5. Intermediate Value Theorem for Set Intervals

- Situation: in the range $S = f(S_1, ..., S_n)$, we found the intersection S and the union \overline{S} of all possible sets.
- Conclusion: $S \subseteq [S, \overline{S}]$.
- Theorem: $S = [S, \overline{S}].$
- Equivalent formulation: for every $S \in [\underline{S}, \overline{S}]$, there exist sets

$$S_1 \in [\underline{S}_1, \overline{S}_1], \dots, S_n \in [\underline{S}_n, \overline{S}_n]$$

for which $S = f(S_1, \ldots, S_n)$.

- Difficulty: values $S_i(u)$ and S(u) are discrete (0 or 1), so the standard intermediate value theorem does not apply.
- Solution: we define S_i element-by-element.
- Known: for each $u \in U$, we have $\underline{S}(u) \leq S(u) \leq \overline{S}(u)$.
- Conclusion: S(u) = S(u) or $S(u) = \overline{S}(u)$.
- By definition of \underline{S} and \overline{S} , in both cases, there exist sets $s_i^{(u)}$ for which $S(u) = f(s_1^{(u)}(u), \dots, s_n^{(u)}(u)).$
- We take $S_i(u) = S_i^{(u)}(u)$.

Need for Set Intervals Need for Set . . . Elementary Set . . . How to Get Exact Set . . Intermediate Value . . . Fuzzy Sets Interval-Valued Fuzzv... Solution Probabilistic Case: In . . . Similar Idea for Sets Acknowledgments 44

Title Page

Page 6 of 12

Go Back

Full Screen

Close

6. Fuzzy Sets

- Previous description:
 - about some elements u, we know P(u);
 - about some elements u, we know $\neg P(u)$:
 - about other elements u, we know nothing about P(u).
- Description: sets \underline{S} and $(-S) = -\overline{S}$.
- Additional information: experts may believe that P(u) holds with some certainty α .
- How to describe this information: a nested family of sets S_{α} corresponding to α :
 - $\bullet \ S_0 = \overline{S};$
 - $S_1 = \underline{S}$;
 - if $\alpha < \alpha'$ then $S_{\alpha} \subseteq S_{\alpha'}$.
- Traditional description: $\mu_A(u) = \max\{\alpha : u \in S_\alpha\}.$
- Set operations in terms of μ : $\mu_{A \cup B}(u) = \max(\mu_A(u), \mu_B(u));$ $\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u));$ $\mu_{\neg A}(u) = 1 \mu_A(u).$

Need for Set Intervals
Need for Set ...
Elementary Set ...
How to Get Exact Set ...
Intermediate Value ...
Fuzzy Sets
Interval-Valued Fuzzy ...
Solution
Probabilistic Case: In ...
Similar Idea for Sets
Acknowledgments

Title Page

Go Back

Full Screen

Close

7. Interval-Valued Fuzzy Sets

- Situation: for every α , we are not sure which elements belong to S_{α} and which do not.
- Description: $\underline{S}_{\alpha} \subseteq \overline{S}_{\alpha}$.
- Alternative description: interval-valued membership function

$$[\mu_{\scriptscriptstyle A}(u), \overline{\mu}_{\scriptscriptstyle A}(u)].$$

• Meaning: for all u, we have $\mu_A(u) \in [\underline{\mu}_A(u), \overline{\mu}_A(u)]$, i.e.,

$$A \subseteq A \subseteq \overline{A}$$
.

- Problem:
 - we know $\mathbf{A}_1, \ldots, \mathbf{A}_n$,
 - we know that $A = f(A_1, \ldots, A_n)$ for some set-expression f;
 - find the range of A:

$$f(\mathbf{A}_1,\ldots,\mathbf{A}_n)=\{f(A_1,\ldots,A_n):A_1\in\mathbf{A}_1,\ldots,A_n\in\mathbf{A}_n\}.$$

Need for Set Intervals Need for Set . . . Elementary Set . . . How to Get Exact Set . . Intermediate Value . . . Fuzzy Sets Interval-Valued Fuzzy . . . Solution Probabilistic Case: In . . . Similar Idea for Sets Acknowledgments Title Page 44 **>>** Page 8 of 12 Go Back Full Screen Close Quit

8. Solution

- Negative result: in general, the problem is NP-hard.
- Straightforward interval computations:

$$\begin{split} [\underline{\mu}_A(u),\overline{\mu}_A(u)] \cup [\underline{\mu}_B(u),\overline{\mu}_B(u)] &= [\max(\underline{\mu}_A(u),\underline{\mu}_B(u)),\max(\overline{\mu}_A(u),\overline{\mu}_B(u))]; \\ [\underline{\mu}_A(u),\overline{\mu}_A(u)] \cap [\underline{\mu}_B(u),\overline{\mu}_B(u)] &= [\min(\underline{\mu}_A(u),\underline{\mu}_B(u)),\min(\overline{\mu}_A(u),\overline{\mu}_B(u))]; \\ -[\mu_A(u),\overline{\mu}_A(u)] &= [1-\overline{\mu}_A(u),1-\mu_A(u))]. \end{split}$$

- Good news: we always get an enclosure.
- Bad news: excess width.
- Solution: idea. Use DNF for \overline{A} and CNF for A.
- Details: it is slightly different from the usual since we view P and $\neg P$ as separate literals.
- Here, $A \cap -A$ is not transformed into \emptyset , so we may have

$$(A_1 \cap -A_1 \cap A_2 \cap -A_3 \ldots) \cup (\ldots) \ldots$$

• Intermediate value theorem: follows from continuity of elementby-element function $A(u) = f(A_1(u), \ldots, A_n(u))$. Need for Set Intervals

Need for Set . . .

Elementary Set . . .

How to Get Exact Set . .

Intermediate Value . . .
Fuzzy Sets

Interval-Valued Fuzzv...

Solution

Probabilistic Case: In . . .

Similar Idea for Sets

Acknowledgments

Title Page

Page 9 of 12

Go Back

Full Screen

Close

9. Probabilistic Case: In Brief

- Situation: we know $p(A_i)$, we want estimates for p(A), where $A = f(A_1, \ldots, A_n)$.
- In general: NP-hard.
- Exp-time algorithm: LP with $p(A_1 \& -A_2 \& ...)$ etc.
- Feasible algorithm: expert systems use technique similar to straightforward interval computations.
- Details: we parse F and replace each computation step with corresponding probability operation.
- Problem: at each step, we ignore the dependence between the intermediate results F_i .
- Result: intervals are too wide (and numerical estimates off).
- Example: the estimate for $P(A \vee \neg A)$ is not 1.
- Solution: similarly to the above algorithm, besides $P(F_j)$, we also compute $P(F_j \& F_i)$ (or $P(F_{j_1} \& \ldots \& F_{j_k})$).
- On each step, use all combinations of l such probabilities to get new estimates.
- Result: e.g., $P(A \vee \neg A)$ is estimated as 1.

10. Similar Idea for Sets

- Problem: estimate the range of $f(S_1, \ldots, S_n)$ in polynomial time.
- Previous algorithm: for each intermediate set $S_m = S_i \oplus S_j$, we use bounds on S_i and S_j to find bounds on S_m .
- New idea: for each m, in addition to bounds on S_m , we also keep (and compute) bounds on

$$S_{m,k} \stackrel{\text{def}}{=} S_m \cap S_k, \quad S_{m,-k} \stackrel{\text{def}}{=} S_m \cap -S_k,$$
$$S_{-m,k} \stackrel{\text{def}}{=} -S_m \cap S_k, \quad S_{-m,-k} \stackrel{\text{def}}{=} -S_m \cap -S_k,$$

for all $k \leq n$.

• Example: $S_m = S_i \cap S_j$, then

$$S_m \cap S_k = (S_i \cap S_k) \cap (S_j \cap S_k) \text{ so } \overline{S}_{m,k} = \overline{S}_{i,k} \cap \overline{S}_{j,k};$$

$$S_m \cap -S_k = (S_i \cap -S_k) \cap (S_j \cap -S_k) \text{ so } \overline{S}_{m,-k} = \overline{S}_{i,-k} \cap \overline{S}_{j,-k};$$

$$-S_m \cap S_k = (-S_i \cap S_k) \cup (-S_j \cap S_k) \text{ so } \overline{S}_{m,k} = \overline{S}_{-i,k} \cup \overline{S}_{-j,k};$$

$$-S_m \cap -S_k = (-S_i \cap -S_k) \cup (-S_j \cap -S_k) \text{ so } \overline{S}_{m,k} = \overline{S}_{-i,-k} \cup \overline{S}_{-j,-k}.$$

• Comment: similar algorithm is possible for fuzzy sets.

Need for Set Intervals

Need for Set . . .

Elementary Set . . .

How to Get Exact Set...

Intermediate Value . . .

Fuzzy Sets

Interval-Valued Fuzzy . .

Solution

Probabilistic Case: In . . .

Similar Idea for Sets

Acknowledgments

44

Title Page

>>

Go Back

Full Screen

Close

11. Acknowledgments

This work was supported in part:

- by NSF grants HRD-0734825, EAR-0225670, and EIA-0080940,
- by Texas Department of Transportation contract No. 0-5453,
- by the Japan Advanced Institute of Science and Technology (JAIST) International Joint Research Grant 2006-08, and
- by the Max Planck Institut für Mathematik.

The authors are thankful to the anonymous referees for valuable suggestions.

