Towards Decision Making under Interval, Set-Valued, Fuzzy, and Z-Number Uncertainty: A Fair Price Approach

Joe Lorkowski and Vladik Kreinovich University of Texas at El Paso, El Paso, TX 79968, USA lorkowski@computer.org, vladik@utep.edu

Rafik Aliev Azerbaijan State Oil Academy, Baki, Azerbaijan raliev@asoa.edu.az

Need for Decision . . . How Decisions Under . . What If We Have ... Fair Price Approach: . . . Case of Interval . . . Case of Set-Valued . . . Case of Fuzzy Numbers Case of General 7-Conclusions and . . . Home Page **>>** Page 1 of 30 Go Back Full Screen Close Quit

1. Need for Decision Making

- In many practical situations:
 - we have several alternatives, and
 - we need to select one of these alternatives.

• Examples:

- a person saving for retirement needs to find the best way to invest money;
- a company needs to select a location for its new plant;
- a designer must select one of several possible designs for a new airplane;
- a medical doctor needs to select a treatment for a patient.

2. Need for Decision Making Under Uncertainty

- Decision making is easier if we know the exact consequences of each alternative selection.
- Often, however:
 - we only have an incomplete information about consequences of different alternative, and
 - we need to select an alternative under this uncertainty.

3. How Decisions Under Uncertainty Are Made Now

- Traditional decision making assumes that:
 - for each alternative a,
 - we know the probability $p_i(a)$ of different outcomes i.
- It can be proven that:
 - preferences of a rational decision maker can be described by $utilities u_i$ so that
 - an alternative a is better if its expected utility $\overline{u}(a) \stackrel{\text{def}}{=} \sum_{i} p_i(a) \cdot u_i$ is larger.

4. Hurwicz Optimism-Pessimism Criterion

- Often, we do not know these probabilities p_i .
- For example, sometimes:
 - we only know the range $[\underline{u}, \overline{u}]$ of possible utility values, but
 - we do not know the probability of different values within this range.
- It has been shown that in this case, we should select an alternative s.t. $\alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u} \to \text{max}$.
- Here, $\alpha_H \in [0,1]$ described the optimism level of a decision maker:
 - $\alpha_H = 1$ means optimism;
 - $\alpha_H = 0$ means pessimism;
 - $0 < \alpha_H < 1$ combines optimism and pessimism.

Need for Decision . . .

How Decisions Under . . .

What If We Have...

Fair Price Approach:...

Case of Interval...

Case of Set-Valued...

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and...

Home Page

Title Page

Go Back

Full Screen

Full Screen

Close

5. What If We Have Fuzzy Uncertainty? Z-Number Uncertainty?

- There are many semi-heuristic methods of decision making under fuzzy uncertainty.
- These methods have led to many practical applications.
- However, often, different methods lead to different results.
- R. Aliev proposed a utility-based approach to decision making under fuzzy and Z-number uncertainty.
- However, there still are many practical problems when it is not fully clear how to make a decision.
- In this talk, we provide foundations for the new methodology of decision making under uncertainty.
- This methodology which is based on a natural idea of a fair price.

How Decisions Under ... What If We Have... Fair Price Approach: . . . Case of Interval . . . Case of Set-Valued . . . Case of Fuzzy Numbers Case of General Z- . . . Conclusions and . . . Home Page Title Page **>>** Page 6 of 30 Go Back Full Screen Close Quit

Need for Decision . . .

6. Fair Price Approach: An Idea

- When we have a full information about an object, then:
 - we can express our desirability of each possible situation
 - by declaring a price that we are willing to pay to get involved in this situation.
- Once these prices are set, we simply select the alternative for which the participation price is the highest.
- In decision making under uncertainty, it is not easy to come up with a fair price.
- A natural idea is to develop techniques for producing such fair prices.
- These prices can then be used in decision making, to select an appropriate alternative.

7. Case of Interval Uncertainty

- Ideal case: we know the exact gain u of selecting an alternative.
- A more realistic case: we only know the lower bound \underline{u} and the upper bound \overline{u} on this gain.
- Comment: we do not know which values $u \in [\underline{u}, \overline{u}]$ are more probable or less probable.
- This situation is known as interval uncertainty.
- We want to assign, to each interval $[\underline{u}, \overline{u}]$, a number $P([\underline{u}, \overline{u}])$ describing the fair price of this interval.
- Since we know that $u \leq \overline{u}$, we have $P([\underline{u}, \overline{u}]) \leq \overline{u}$.
- Since we know that \underline{u} , we have $\underline{u} \leq P([\underline{u}, \overline{u}])$.

Need for Decision . . . How Decisions Under... What If We Have... Fair Price Approach: . . . Case of Interval . . . Case of Set-Valued . . . Case of Fuzzy Numbers Case of General Z- . . . Conclusions and . . . Home Page Title Page **>>** Page 8 of 30 Go Back Full Screen Close Quit

8. Case of Interval Uncertainty: Monotonicity

- Case 1: we keep the lower endpoint \underline{u} intact but increase the upper bound.
- This means that we:
 - keeping all the previous possibilities, but
 - we allow new possibilities, with a higher gain.
- In this case, it is reasonable to require that the corresponding price not decrease:

if
$$\underline{u} = \underline{v}$$
 and $\overline{u} < \overline{v}$ then $P([\underline{u}, \overline{u}]) \le P([\underline{v}, \overline{v}])$.

- Case 2: we dismiss some low-gain alternatives.
- This should increase (or at least not decrease) the fair price:

if
$$\underline{u} < \underline{v}$$
 and $\overline{u} = \overline{v}$ then $P([\underline{u}, \overline{u}]) \le P([\underline{v}, \overline{v}])$.

How Decisions Under . . What If We Have... Fair Price Approach: . . . Case of Interval . . . Case of Set-Valued . . . Case of Fuzzy Numbers Case of General Z- . . . Conclusions and . . . Home Page Title Page **>>** Page 9 of 30 Go Back Full Screen Close Quit

Need for Decision . . .

9. Additivity: Idea

- Let us consider the situation when we have two consequent independent decisions.
- We can consider two decision processes separately.
- We can also consider a single decision process in which we select a pair of alternatives:
 - the 1st alternative corr. to the 1st decision, and
 - the 2nd alternative corr. to the 2nd decision.
- If we are willing to pay:
 - the amount u to participate in the first process, and
 - the amount v to participate in the second decision process,
- then we should be willing to pay u + v to participate in both decision processes.

How Decisions Under... What If We Have... Fair Price Approach: . . . Case of Interval . . . Case of Set-Valued . . . Case of Fuzzy Numbers Case of General Z-... Conclusions and . . . Home Page Title Page **>>** Page 10 of 30 Go Back Full Screen Close Quit

Need for Decision . . .

- About the gain u from the first alternative, we only know that this (unknown) gain is in $[\underline{u}, \overline{u}]$.
- About the gain v from the second alternative, we only know that this gain belongs to the interval $[\underline{v}, \overline{v}]$.
- The overall gain u + v can thus take any value from the interval

$$[\underline{u}, \overline{u}] + [\underline{v}, \overline{v}] \stackrel{\text{def}}{=} \{u + v : u \in [\underline{u}, \overline{u}], v \in [\underline{v}, \overline{v}]\}.$$

• It is easy to check that

$$[\underline{u}, \overline{u}] + [\underline{v}, \overline{v}] = [\underline{u} + \underline{v}, \overline{u} + \overline{v}].$$

• Thus, the additivity requirement about the fair prices takes the form

$$P([\underline{u} + \underline{v}, \overline{u} + \overline{v}]) = P([\underline{u}, \overline{u}]) + P([\underline{v}, \overline{v}]).$$

Need for Decision...

How Decisions Under...

What If We Have...

Fair Price Approach:...

Case of Interval . . .

Case of Set-Valued . . .

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and . . .

Home Page

Title Page

Page 11 of 30

Go Back

Full Screen

Close

- By a fair price under interval uncertainty, we mean a function $P([u, \overline{u}])$ for which:
 - $\underline{u} \leq P([\underline{u}, \overline{u}]) \leq \overline{u}$ for all u (conservativeness);
 - if u = v and $\overline{u} < \overline{v}$, then $P([u, \overline{u}]) \leq P([v, \overline{v}])$ (monotonicity);
 - (additivity) for all \underline{u} , \overline{u} , \underline{v} , and \overline{v} , we have

$$P([\underline{u} + \underline{v}, \overline{u} + \overline{v}]) = P([\underline{u}, \overline{u}]) + P([\underline{v}, \overline{v}]).$$

• Theorem: Each fair price under interval uncertainty has the form

$$P([\underline{u}, \overline{u}]) = \alpha_H \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{u} \text{ for some } \alpha_H \in [0, 1].$$

• Comment: we thus get a new justification of Hurwicz optimism-pessimism criterion.

Need for Decision . . . How Decisions Under...

What If We Have...

Fair Price Approach: . . .

Case of Interval . . .

Case of Set-Valued . . . Case of Fuzzy Numbers

Case of General Z- . . .

Conclusions and . . . Home Page

Title Page

Page 12 of 30

Go Back

Full Screen

Close

12. Proof: Main Ideas

- Due to monotonicity, P([u, u]) = u.
- Due to monotonicity, $\alpha_H \stackrel{\text{def}}{=} P([0,1]) \in [0,1].$
- For $[0,1] = [0,1/n] + \ldots + [0,1/n]$ (*n* times), additivity implies $\alpha_H = n \cdot P([0,1/n])$, so $P([0,1/n]) = \alpha_H \cdot (1/n)$.
- For [0, m/n] = [0, 1/n] + ... + [0, 1/n] (*m* times), additivity implies $P([0, m/n]) = \alpha_H \cdot (m/n)$.
- For each real number r, for each n, there is an m s.t. $m/n \le r \le (m+1)/n$.
- Monotonicity implies $\alpha_H \cdot (m/n) = P([0, m/n]) \le P([0, r]) \le P([0, (m+1)/n]) = \alpha_H \cdot ((m+1)/n).$
- When $n \to \infty$, $\alpha_H \cdot (m/n) \to \alpha_H \cdot r$ and $\alpha_H \cdot ((m+1)/n) \to r$, hence $P([0,r]) = \alpha_H \cdot r$.
- For $[\underline{u}, \overline{u}] = [\underline{u}, \underline{u}] + [0, \overline{u} \underline{u}]$, additivity implies $P([\underline{u}, \overline{u}]) = \underline{u} + \alpha_H \cdot (\overline{u} \underline{u})$. Q.E.D.

Need for Decision . . .

How Decisions Under . . .

What If We Have...

Case of Interval...

Fair Price Approach:...

Case of Set-Valued . . .

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and . . .

Home Page

Title Page

>>

◆

Page 13 of 30

Go Back

Full Screen

Class

Close

13. Case of Set-Valued Uncertainty

- In some cases:
 - in addition to knowing that the actual gain belongs to the interval $[\underline{u}, \overline{u}]$,
 - we also know that some values from this interval cannot be possible values of this gain.
- For example:
 - if we buy an obscure lottery ticket for a simple prize-or-no-prize lottery from a remote country,
 - we either get the prize or lose the money.
- In this case, the set of possible values of the gain consists of two values.
- Instead of a (bounded) *interval* of possible values, we can consider a general bounded *set* of possible values.

•
$$P([\underline{u}, \overline{u}]) = \alpha_H \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{u} \ (conservativeness);$$

- P(S + S') = P(S) + P(S'), where $S + S' \stackrel{\text{def}}{=} \{s + s' : s \in S, s' \in S'\}$ (additivity).
- Theorem: Each fair price under set uncertainty has the form $P(S) = \alpha_H \cdot \sup S + (1 \alpha_H) \cdot \inf S$.
- Proof: idea.
 - $\{\underline{s}, \overline{s}\} \subseteq S \subseteq [\underline{s}, \overline{s}]$, where $\underline{s} \stackrel{\text{def}}{=} \inf S$ and $\underline{s} \stackrel{\text{def}}{=} \sup S$;
 - thus, $[2\underline{s}, 2\overline{s}] = \{\underline{s}, \overline{s}\} + [\underline{s}, \overline{s}] \subseteq S + [\underline{s}, \overline{s}] \subseteq [\underline{s}, \overline{s}] + [\underline{s}, \overline{s}] = [2\underline{s}, 2\overline{s}];$
 - so $S + [\underline{s}, \overline{s}] = [2\underline{s}, 2\overline{s}]$, hence $P(S) + P([\underline{s}, \overline{s}]) = P([2\underline{s}, 2\overline{s}])$, and

$$P(S) = (\alpha_H \cdot (2\overline{s}) + (1 - \alpha_H) \cdot (2\underline{s})) - (\alpha_H \cdot \overline{s} + (1 - \alpha_H) \cdot \underline{s}).$$

How Decisions Under...

Need for Decision . . .

What If We Have...

Fair Price Approach:...

Case of Interval . . .

Case of Set-Valued . . .
Case of Fuzzy Numbers

Case of General Z-...

Conclusions and . . .

Title Page

Home Page

Page 15 of 30

Go Back

Full Screen

Close

Close

15. Crisp Z-Numbers, Z-Intervals, and Z-Sets

- Until now, we assumed that we are 100% certain that the actual gain is contained in the given interval or set.
- In reality, mistakes are possible.
- Usually, we are only certain that u belongs to the interval or set with some probability $p \in (0,1)$.
- A pair of information and a degree of certainty about this this info is what L. Zadeh calls a *Z-number*.
- We will call a pair (u, p) consisting of a (crisp) number and a (crisp) probability a *crisp Z-number*.
- We will call a pair $([\underline{u}, \overline{u}], p)$ consisting of an interval and a probability a *Z-interval*.
- We will call a pair (S, p) consisting of a set and a probability a Z-set.

16. Additivity for Z-Numbers

- Situation:
 - for the first decision, our degree of confidence in the gain estimate u is described by some probability p;
 - for the 2nd decision, our degree of confidence in the gain estimate v is described by some probability q.
- The estimate u + v is valid only if both gain estimates are correct.
- Since these estimates are independent, the probability that they are both correct is equal to $p \cdot q$.
- Thus, for crisp Z-numbers (u, p) and (v, q), the sum is equal to $(u + v, p \cdot q)$.
- Similarly, for Z-intervals $([\underline{u}, \overline{u}], p)$ and $([\underline{v}, \overline{v}], q)$, the sum is equal to $([\underline{u} + \underline{v}, \overline{u} + \overline{v}], p \cdot q)$.
- For Z-sets, $(S, p) + (S', q) = (S + S', p \cdot q)$.

Need for Decision . . . How Decisions Under... What If We Have... Fair Price Approach: . . . Case of Interval . . . Case of Set-Valued . . . Case of Fuzzy Numbers Case of General Z- . . . Conclusions and . . . Home Page Title Page **>>** Page 17 of 30 Go Back

Full Screen

Close

- We want a function P that assigns, to every crisp Z-number (u, p), a real number P(u, p), for which:
 - P(u, 1) = u for all u (conservativeness);
 - for all u, v, p, and q, we have $P(u + v, p \cdot q) = P(u, p) + P(v, q)$ (additivity);
 - the function P(u, p) is continuous in p (continuity).
- Theorem: Fair price under crisp Z-number uncertainty has the form $P(u, p) = u k \cdot \ln(p)$ for some k.
- Theorem: For Z-intervals and Z-sets, $P(S,p) = \alpha_H \cdot \sup S + (1 - \alpha_H) \cdot \inf S - k \cdot \ln(p).$
- Proof: (u, p) = (u, 1) + (0, p); for continuous $f(p) \stackrel{\text{def}}{=} (0, p)$, additivity means $f(p \cdot q) = f(p) + f(q)$, so $f(p) = -k \cdot \ln(p)$.

Need for Decision . . .

How Decisions Under . . .

What If We Have...

Fair Price Approach:...

Case of Interval . . .

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and...

Case of Set-Valued . . .

Home Page

Title Page

Page 18 of 30

Go Back

Full Screen

Close

- We often do not know the exact probability p.
- Instead, we may only know the interval $[\underline{p}, \overline{p}]$ of possible values of p.
- More generally, we know the set \mathcal{P} of possible values of p.
- If we only know that $p \in [\underline{p}, \overline{p}]$ and $q \in [\underline{q}, \overline{q}]$, then possible values of $p \cdot q$ form the interval

$$\left[\,\underline{p}\cdot\underline{q},\overline{p}\cdot\overline{q}\,\right]$$
.

• For sets \mathcal{P} and \mathcal{Q} , the set of possible values $p \cdot q$ is the set

$$\mathcal{P} \cdot \mathcal{Q} \stackrel{\text{def}}{=} \{ p \cdot q : p \in \mathcal{P} \text{ and } q \in \mathcal{Q} \}.$$

Need for Decision...

How Decisions Under...

What If We Have...

Fair Price Approach:...

Case of Interval . . .

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and...

Case of Set-Valued . . .

Home Page

Title Page

>>

Go Back

Full Screen

Page 19 of 30

Close

- We want a function P that assigns, to every Z-number
 - $(u, \lceil p, \overline{p} \rceil)$, a real number $P(u, \lceil p, \overline{p} \rceil)$, so that:
 - $P(u, [p, p]) = u k \cdot \ln(p)$ (conservativeness); • $P(u+v, \lceil p \cdot q, \overline{p} \cdot \overline{q} \rceil) = P(u, \lceil p, \overline{p} \rceil) + P(v, \lceil q, \overline{q} \rceil)$
 - (additivity); • $P(u, [p, \overline{p}])$ is continuous in p and \overline{p} (continuity).
- *Theorem:* Fair price has the form

19.

- $P(u, \lceil p, \overline{p} \rceil) = u (k \beta) \cdot \ln(\overline{p}) \beta \cdot \ln(p)$ for some $\beta \in [0, 1]$.
 - For set-valued probabilities, we similarly have $P(u, \mathcal{P}) = u - (k - \beta) \cdot \ln(\sup \mathcal{P}) - \beta \cdot \ln(\inf \mathcal{P}).$

 - For Z-sets and Z-intervals, we have $P(S, \mathcal{P}) =$
- $\alpha_H \cdot \sup S + (1 \alpha_H) \cdot \inf S (k \beta) \cdot \ln(\sup \mathcal{P}) \beta \cdot \ln(\inf \mathcal{P}).$

What If We Have...

Need for Decision . . . How Decisions Under...

Fair Price Approach: . . .

Case of Interval . . .

Case of Set-Valued . . .

Case of Fuzzy Numbers Case of General Z- . . .

Conclusions and . . .

Home Page

Title Page

>>

Page 20 of 30

Go Back

Full Screen

Quit

Close

- By additivity, $P(S, \mathcal{P}) = P(S, 1) + P(0, \mathcal{P})$, so it is sufficient to find $P(0, \mathcal{P})$.
- For intervals, $P(0, [\underline{p}, \overline{p}]) = P(0, \overline{p}) + P(0, [p, 1])$, for $p \stackrel{\text{def}}{=} \underline{p}/\overline{p}$.
- For $f(p) \stackrel{\text{def}}{=} P(0, [p, 1])$, additivity means $f(p \cdot q) = f(p) \cdot f(q).$
- Thus, $f(p) = -\beta \cdot \ln(p)$ for some β .
- Hence, $P(0, [p, \overline{p}]) = -k \cdot \ln(\overline{p}) \beta \cdot \ln(p)$.
- Since $ln(p) = ln(\overline{p}) ln(p)$, we get the desired formula.
- For sets \mathcal{P} , with $\underline{p} \stackrel{\text{def}}{=} \inf \mathcal{P}$ and $\overline{p} \stackrel{\text{def}}{=} \sup \mathcal{P}$, we have $\mathcal{P} \cdot [\underline{p}, \overline{p}] = [\underline{p}^2, \overline{p}^2]$, so $P(0, \mathcal{P}) + P(0, [\underline{p}, \overline{p}]) = P(0, [\underline{p}^2, \overline{p}^2])$.
- Thus, from known formulas for intervals $[\underline{p}, \overline{p}]$, we get formulas for sets \mathcal{P} .

Need for Decision . . .

How Decisions Under . . .

What If We Have...

Fair Price Approach:...

Case of Interval . . .

Case of Set-Valued . . .

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and . . .

Home Page

Title Page

Page 21 of 30

Go Back

Full Screen

Close

21. Case of Fuzzy Numbers

- An expert is often imprecise ("fuzzy") about the possible values.
- For example, an expert may say that the gain is small.
- To describe such information, L. Zadeh introduced the notion of *fuzzy numbers*.
- For fuzzy numbers, different values u are possible with different degrees $\mu(u) \in [0, 1]$.
- The value w is a possible value of u + v if:
 - for some values u and v for which u + v = w,
 - \bullet u is a possible value of 1st gain, and
 - v is a possible value of 2nd gain.
- If we interpret "and" as min and "or" ("for some") as max, we get Zadeh's extension principle:

$$\mu(w) = \max_{u,v: u+v=w} \min(\mu_1(u), \mu_2(v)).$$

How Decisions Under . . What If We Have... Fair Price Approach: . . . Case of Interval . . . Case of Set-Valued . . . Case of Fuzzy Numbers Case of General Z- . . . Conclusions and . . . Home Page Title Page **>>** Page 22 of 30 Go Back Full Screen Close Quit

Need for Decision . . .

- Reminder: $\mu(w) = \max_{u.v: u+v=w} \min(\mu_1(u), \mu_2(v)).$
- This operation is easiest to describe in terms of α -cuts

$$\mathbf{u}(\alpha) = [u^{-}(\alpha), u^{+}(\alpha)] \stackrel{\text{def}}{=} \{u : \mu(u) \ge \alpha\}.$$

• Namely, $\mathbf{w}(\alpha) = \mathbf{u}(\alpha) + \mathbf{v}(\alpha)$, i.e.,

$$w^{-}(\alpha) = u^{-}(\alpha) + v^{-}(\alpha) \text{ and } w^{+}(\alpha) = u^{+}(\alpha) + v^{+}(\alpha).$$

• For product (of probabilities), we similarly get

$$\mu(w) = \max_{u,v: u \cdot v = w} \min(\mu_1(u), \mu_2(v)).$$

• In terms of α -cuts, we have $\mathbf{w}(\alpha) = \mathbf{u}(\alpha) \cdot \mathbf{v}(\alpha)$, i.e., $w^{-}(\alpha) = u^{-}(\alpha) \cdot v^{-}(\alpha)$ and $w^{+}(\alpha) = u^{+}(\alpha) \cdot v^{+}(\alpha)$. Need for Decision . . . How Decisions Under...

What If We Have...

Fair Price Approach: . . .

Case of Interval . . .

Case of Set-Valued . . .

Case of General Z- . . .

Case of Fuzzy Numbers

Conclusions and . . . Home Page

Title Page

Page 23 of 30

Go Back

Full Screen

Close

- We want to assign, to every fuzzy number s, a real number P(s), so that:
 - if a fuzzy number s is located between \underline{u} and \overline{u} , then $\underline{u} \leq P(s) \leq \overline{u}$ (conservativeness);
 - P(u+v) = P(u) + P(v) (additivity);
 - if for all α , $s^{-}(\alpha) \leq t^{-}(\alpha)$ and $s^{+}(\alpha) \leq t^{+}(\alpha)$, then we have $P(s) \leq P(t)$ (monotonicity);
 - if μ_n uniformly converges to μ , then $P(\mu_n) \to P(\mu)$ (continuity).
- Theorem. The fair price is equal to

$$P(s) = s_0 + \int_0^1 k^-(\alpha) \, ds^-(\alpha) - \int_0^1 k^+(\alpha) \, ds^+(\alpha) \text{ for some } k^{\pm}(\alpha).$$

Need for Decision . . .

How Decisions Under . . .

What If We Have...

Fair Price Approach:...

Case of Interval . . .

Case of Set-Valued . . .
Case of Fuzzy Numbers

Case of General Z-...

Conclusions and . . .

Home Page

Title Page

(4 **)**

Page 24 of 30

Go Back

Full Screen

Close

$$P(s) = \int_0^1 K^-(\alpha) \cdot s^-(\alpha) d\alpha + \int_0^1 K^+(\alpha) \cdot s^+(\alpha) d\alpha.$$

• Conservativeness means that

$$\int_0^1 K^-(\alpha) d\alpha + \int_0^1 K^+(\alpha) d\alpha = 1.$$

• For the interval $[\underline{u}, \overline{u}]$, we get

$$P(s) = \left(\int_0^1 K^-(\alpha) \, d\alpha\right) \cdot \underline{u} + \left(\int_0^1 K^+(\alpha) \, d\alpha\right) \cdot \overline{u}.$$

- Thus, Hurwicz optimism-pessimism coefficient α_H is equal to $\int_0^1 K^+(\alpha) d\alpha$.
- In this sense, the above formula is a generalization of Hurwicz's formula to the fuzzy case.

Need for Decision . . .

How Decisions Under...

What If We Have...

Case of Interval . . .

Fair Price Approach: . . .

Case of Set-Valued . . .

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and . . .

Home Page

Title Page

Page 25 of 30

Go Back

Full Screen

Close

- Define $\mu_{\gamma,u}(0) = 1$, $\mu_{\gamma,u}(x) = \gamma$ for $x \in (0,u]$, and $\mu_{\gamma,u}(x) = 0$ for all other x.
- $\mathbf{s}_{\gamma,u}(\alpha) = [0,0]$ for $\alpha > \gamma, \mathbf{s}_{\gamma,u}(\alpha) = [0,u]$ for $\alpha \leq \gamma$.
- Based on the α -cuts, one check that $s_{\gamma,u+v} = s_{\gamma,u} + s_{\gamma,v}$.
- Thus, due to additivity, $P(s_{\gamma,u+v}) = P(s_{\gamma,u}) + P(s_{\gamma,v})$.
- Due to monotonicity, $P(s_{\gamma,u}) \uparrow$ when $u \uparrow$.
- Thus, $P(s_{\gamma,u}) = k^+(\gamma) \cdot u$ for some value $k^+(\gamma)$.
- Let us now consider a fuzzy number s s.t. $\mu(x) = 0$ for x < 0, $\mu(0) = 1$, then $\mu(x)$ continuously $\downarrow 0$.
- For each sequence of values $\alpha_0 = 1 < \alpha_1 < \alpha_2 < \dots < \alpha_{n-1} < \alpha_n = 1$, we can form an approximation s_n :
 - $s_n^-(\alpha) = 0$ for all α ; and
 - when $\alpha \in [\alpha_i, \alpha_{i+1})$, then $s_n^+(\alpha) = s^+(\alpha_i)$.

Need for Decision...

How Decisions Under...

What If We Have...

Fair Price Approach:...

Case of Set-Valued...

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and . . .

Home Page
Title Page

Page 26 of 30

Go Back

Full Screen

Close

26. Proof (cont-d)

- Here, $s_n = s_{\alpha_{n-1}, s^+(\alpha_{n-1})} + s_{\alpha_{n-2}, s^+(\alpha_{n-2}) s^+(\alpha_{n-1})} + \dots + s_{\alpha_1, \alpha_1 \alpha_2}$.
- Due to additivity, $P(s_n) = k^+(\alpha_{n-1}) \cdot s^+(\alpha_{n-1}) + k^+(\alpha_{n-2}) \cdot (s^+(\alpha_{n-2}) s^+(\alpha_{n-1})) + \ldots + k^+(\alpha_1) \cdot (\alpha_1 \alpha_2).$
- This is minus the integral sum for $\int_0^1 k^+(\gamma) ds^+(\gamma)$.
- Here, $s_n \to s$, so $P(s) = \lim P(s_n) = \int_0^1 k^+(\gamma) ds^+(\gamma)$.
- Similarly, for fuzzy numbers s with $\mu(x) = 0$ for x > 0, we have $P(s) = \int_0^1 k^-(\gamma) ds^-(\gamma)$ for some $k^-(\gamma)$.
- A general fuzzy number g, with α -cuts $[g^-(\alpha), g^+(\alpha)]$ and a point g_0 at which $\mu(g_0) = 1$, is the sum of g_0 ,
 - a fuzzy number with α -cuts $[0, g^+(\alpha) g_0]$, and
 - a fuzzy number with α -cuts $[g_0 g^-(\alpha), 0]$.
- Additivity completes the proof.

Need for Decision...

How Decisions Under...

What If We Have...

Fair Price Approach:...

Case of Set-Valued...

Case of Fuzzy Numbers

Case of General Z- . . .

Conclusions and . . .

Home Page

Title Page

Page 27 of 30

Go Back

Full Screen

Close

- In this case, we have two fuzzy numbers:
 - \bullet a fuzzy number s which describes the values, and
 - a fuzzy number p which describes our degree of confidence in the piece of information described by s.
- We want to assign, to every pair (s, p) s.t. p is located on $[p_0, 1]$ for some $p_0 > 0$, a number P(s, p) so that:
 - P(s, 1) is as before (conservativeness);
 - $P(u+v, p\cdot q) = P(u, p) + P(v, q)$ (additivity);
 - if $s_n \to s$ and $p_n \to p$, then $P(s_n, p_n) \to P(s, p)$ (continuity).
- Thm: $P(s,p) = \int_0^1 K^-(\alpha) \cdot s^-(\alpha) \, d\alpha + \int_0^1 K^+(\alpha) \cdot s^+(\alpha) \, d\alpha + \int_0^1 L^-(\alpha) \cdot \ln(p^-(\alpha)) \, d\alpha + \int_0^1 L^+(\alpha) \cdot \ln(p^+(\alpha)) \, d\alpha.$

Need for Decision...

How Decisions Under...

What If We Have...

Case of Interval . . .

Fair Price Approach:...

Case of Set-Valued . . .

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and . . .

Home Page

Title Page

Page 28 of 30

Go Back

Full Screen

Close

28. Conclusions and Future Work

- In many practical situations:
 - we need to select an alternative, but
 - we do not know the exact consequences of each possible selection.
- We may also know, e.g., that the gain will be somewhat larger than a certain value u_0 .
- We propose to make decisions by comparing the *fair* price corresponding to each uncertainty.
- Future work:
 - apply to practical decision problems;
 - generalize to type-2 fuzzy sets;
 - generalize to the case when we have several pieces of information (s, p).

Need for Decision . . .

How Decisions Under . . .

What If We Have...

Fair Price Approach:...

Case of Set-Valued . . .

Case of Fuzzy Numbers

Case of General Z-...

Conclusions and . . .

Home Page
Title Page

44 >>

→

Page 29 of 30

Go Back

Full Screen

Close

29. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122
 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721,
- by Grants 1 T36 GM078000-01 and 1R43TR000173-01 from the National Institutes of Health, and
- by grant N62909-12-1-7039 from the Office of Naval Research.

