Membership Functions Representing a Number vs. Representing a Set: Proof of Unique Reconstruction

Hung T. Nguyen^{1,2}, Vladik Kreinovich³, and Olga Kosheleva³

¹Department of Mathematical Sciences New Mexico State University, Las Cruces, New Mexico 88008, USA ²Faculty of Economics, Chiang Mai University, Thailand Email: hunguyen@nmsu.edu ³University of Texas at El Paso, El Paso, Texas 79968, USA vladik@utep.edu, olgak@utep.edu

Outline Representing a . . . Analysis of the Situation Relation to Possibility . . . Why Not Use . . . A Natural Question This Question Is Non-.. Main Result Auxiliary Result: . . . Home Page **>>** Page 1 of 29 Go Back Full Screen Close Quit

1. Outline

- In some cases, a membership function $\mu(x)$ represents an unknown number.
- In many other cases, it represents an unknown crisp set.
- In this case, for each crisp set S, we can estimate the degree $\mu(S)$ to which this set S is the desired one.
- A natural question is:
 - once we know the values $\mu(S)$ corresponding to all possible crisp sets S,
 - can we reconstruct the original membership function?
- We show that the membership function $\mu(x)$ can indeed be uniquely reconstructed from the values $\mu(S)$.

2. Representing a Number vs. Representing a Set

- In some cases, a fuzzy set is used to represent a *number*.
- Example: we ask a person how old is Mary, and this person replies that Mary is young.
- There is an actual number representing age, but we do not know this number.
- Instead, we have a membership function $\mu(x)$ that describes our uncertain knowledge about this value.
- $\mu(x)$ is our degree of confidence that the x has the desired property e.g., that a person of age x is young.
- In other cases, a fuzzy set is used to represent not a single crisp *value*, but rather a whole crisp *set*.

3. Representing a Number vs. Representing a Set (cont-d)

- Example of a fuzzy number representing a set:
 - when designing a control system for an autonomous car,
 - we can ask a driver which velocities are safe on a certain road segment.
- In reality, there is a (crisp) set of such values. However, we do not know this set.
- Instead, we have a fuzzy set that describes our uncertain knowledge about this unknown set.
- Here, $\mu(x)$ is our degree of confidence that this element x belongs to the (unknown) set U.
- Thus, our degree of confidence that the element y does not belong to the actual set U is equal to $1 \mu(y)$.

Analysis of the Situation

- Fuzziness means that we do not know the actual set U exactly.
- In other words, several different crisp sets S are possible candidates for the unknown actual set U.
- For each crisp set S, let us estimate our degree of confidence $\mu(S)$ that this set S is the set U.
- The equality S = U means that:
 - for every $x \in S$, we have $x \in U$, and
 - for every $y \notin S$, we have $y \notin U$.
- In other words, if we consider all $x_i \in S$ and all $y_i \notin S$, then S = U means that
 - $x_1 \in U$ and $x_1 \in U$ and ... and $y_1 \notin U$ and $y_2 \notin U$ and ...

Analysis of the Situation

Relation to Possibility . . .

Why Not Use . . .

Representing a . . .

Outline

A Natural Question

This Question Is Non-..

Main Result

Auxiliary Result: . . .

Home Page

Title Page

>>

Page 5 of 29

Go Back

Full Screen

Close

5. Analysis of the Situation (cont-d)

• Our degree of confidence in the above "and"-statement can be obtained by applying an "and"-operation:

$$\mu(S) = f_{\&}(\mu(x_1), \mu(x_2), \dots, 1 - \mu(y_1), 1 - \mu(y_2), \dots).$$

- In fuzzy logic, there are many possible "and"-operations (t-norms).
- However, for most of them (e.g., for $a \cdot b$) the result of applying this operation to infinitely many values is 0.
- Among the most widely used t-norms, the only "and"operation for which the result is non-0 is min, so

$$\mu(S) = \min \left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 - \mu(y)) \right).$$

6. Relation to Possibility and Belief

• Similar expressions describe *possibility degree* and *degree of belief*:

$$\operatorname{Poss}(S) = \sup_{x \in S} \mu(x)$$

$$Bel(S) = 1 - Poss(-S) = \inf_{x \in S} \mu(x).$$

• One can see that our degree $\rho(S)$ can described in terms of plausibility and belief, as

$$\mu(S) = \min(\text{Bel}(S), \text{Bel}(-S)) = \min(\text{Bel}(S), 1 - \text{Poss}(S)).$$

Representing a . . . Analysis of the Situation Relation to Possibility . . . Why Not Use . . . A Natural Question This Question Is Non-.. Main Result Auxiliary Result: . . . Home Page Title Page **>>** Page 7 of 29 Go Back Full Screen Close Quit

Outline

7. Why Not Use Probabilities: Advantage of a Fuzzy Approach

- At first glance, it may seem that in this situation, we could also use a probabilistic approach.
- In this case, if we denote the probability that $x \in S$ by p(x), then the probability that $y \notin S$ is equal to

$$1 - p(y).$$

• If we make a usual probabilistic assumption that events $x \in S$ corresponding to different x are independent:

$$\operatorname{Prob}(S = U) = \left(\prod_{i} p(x_i)\right) \cdot \left(\prod_{j} (1 - p(y_j))\right).$$

- However, when we have infinitely many values x_i and y_j , this product becomes a meaningless 0.
- Thus, in general, it is not possible to use the probabilistic approach in this situation.

8. A Natural Question

- We have shown how:
 - if we know the original membership function $\mu(x)$,
 - then we can determine the degree $\mu(S)$ for each crisp set S.
- Natural question: how uniquely can we reconstruct $\mu(x)$ from $\mu(S)$?
- In other words:
 - if we know the value $\mu(S)$ for every crisp set S,
 - can we uniquely reconstruct the original membership function $\mu(x)$?

9. This Question Is Non-Trivial

- At first glance, it may seem that this reconstruction is easy: e.g., to find $\mu(a)$, why not take $S = \{a\}$?
- However, one can easily see that this simple approach does not work.
- For example, if $\mu(x_0) = 1$, and we want to find $\mu(a)$ for some $a \neq x_0$, then for $x_0 \notin \{a\}$, we have

$$1 - \mu(x_0) = 1 - 1 = 0.$$

• Thus, $\inf_{y \notin \{a\}} (1 - \mu(y)) = 0$, and so, irrespective of what is the actual value of $\mu(a)$:

$$\mu(\{a\}) = \min\left(\inf_{x \in \{a\}} \mu(x), \inf_{y \notin \{a\}} (1 - \mu(y))\right) = 0.$$

• We therefore need more sophisticated techniques for reconstructing $\mu(x)$ from $\mu(S)$.

10. Main Result

- Proposition 1.
 - Let $\mu(x)$ and $\mu'(x)$ be membership f-ns, and let

$$\mu(S) = \min \left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 - \mu(y)) \right)$$
 and

$$\mu'(S) = \min\left(\inf_{x \in S} \mu'(x), \inf_{y \notin S} (1 - \mu'(y))\right).$$

- If $\mu(S) = \mu'(S)$ for all crisp sets $S \subseteq X$, then

$$\mu(x) = \mu'(x)$$
 for all x .

- So, the membership f-n $\mu(x)$ can indeed be uniquely reconstructed if we know $\mu(S)$ for all crisp sets S.
- The proof of the main result consists of several lemmas.

Representing a . . . Analysis of the Situation Relation to Possibility . . . Why Not Use . . . A Natural Question This Question Is Non-.. Main Result Auxiliary Result: . . . Home Page Title Page **>>** Page 11 of 29 Go Back Full Screen Close Quit

Outline

11. Lemma 1: Formulation and Proof

• Lemma 1. For every $a \in X$,

$$\mu(a) < 0.5 \Leftrightarrow \exists S \left(\mu(S \cup \{a\}) < \mu(S - \{a\}) \right).$$

- Let us first prove that if $\mu(a) < 0.5$, then there exists a set S for which $\mu(S \cup \{a\}) < \mu(S \{a\})$.
- Let us take $S = \{x : \mu(x) \ge 0.5\}$. In this case, $a \notin S$, so $S \{a\} = S$ and thus, $\mu(S \{a\}) = \mu(S)$.
- For the selected set S, for all $x \in S$, we have $\mu(x) \ge 0.5$. Thus, $\inf_{x \in S} \mu(x) \ge 0.5$.
- For all values $y \notin S$, we have $\mu(y) < 0.5$ hence $1 \mu(y) > 0.5$, thus, $\inf_{y \notin S} (1 \mu(y)) \ge 0.5$, and

$$\mu(S - \{a\}) = \mu(S) = \min\left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 - \mu(y))\right) \ge 0.5.$$

Outline

Representing a . . .

Analysis of the Situation

Relation to Possibility...

Why Not Use...

This Question Is Non-..

A Natural Question

Main Result

am Kesuit

Auxiliary Result: . . .

Title Page

Home Page

Page 12 of 29

Go Back

Full Screen

CI

Close

Proof of Lemma 1 (cont-d)

• On the other hand, for we have $\mu(a) < 0.5$ for $a \in$ $S \cup \{a\}$, thus $\inf_{x \in S \cup \{a\}} \mu(x) \le \mu(a) < 0.5$ and

$$\mu(S \cup \{a\}) = \min\left(\inf_{x \in S \cup \{a\}} \mu(x), \inf_{y \notin S \cup \{a\}} (1 - \mu(y))\right) \le$$

$$\inf_{x \in S \cup \{a\}} \mu(x) < 0.5.$$

- Thus here, $\mu(S \cup \{a\}) < 0.5 \le \mu(S \{a\})$, so indeed $\mu(S \cup \{a\}) < \mu(S - \{a\}).$
- \bullet The existence of such a set S is proven.
- To complete the proof, let us prove that:
 - if there exists S for which $\mu(S \cup \{a\}) < \mu(S \{a\})$,
 - then $\mu(a) < 0.5$.

Representing a . . .

Analysis of the Situation

Relation to Possibility . . . Why Not Use . . .

A Natural Question

Outline

This Question Is Non-..

Main Result Auxiliary Result: . . .

Home Page

Title Page

>>

Page 13 of 29

Go Back

Full Screen

Close

- Indeed, both $\mu(S \cup \{a\})$ and $\mu(S \{a\})$ are minima of infinitely many terms.
- Most of these terms are the same, the only difference is the term corresponding to x = a:
 - $-\operatorname{in} \mu(S \cup \{a\})$, we have the term $\mu(a)$ corresponding to $a \in S \cup \{a\}$, while
 - in $\mu(S \{a\})$, we have the term $1 \mu(a)$ corresponding to $a \notin S - \{a\}$.
- If we had $\mu(a) \geq 0.5$, then we would have $\mu(a) \geq 1$ $\mu(a)$, and thus, we would have $\mu(S \cup \{a\}) \ge \mu(S - \{a\})$.
- So, from the fact that $\mu(S \cup \{a\}) < \mu(S \{a\})$, we conclude that we cannot have $\mu(a) \geq 0.5$.
- Thus, we must have $\mu(a) < 0.5$.
- The lemma is proven.

Representing a . . .

Outline

Analysis of the Situation

Relation to Possibility...

Why Not Use . . .

A Natural Question This Question Is Non-..

Main Result

Auxiliary Result: . . . Home Page

Title Page

Page 14 of 29

Go Back

Full Screen

Close

$$\mu(a) > 0.5 \Leftrightarrow \exists S \left(\mu(S \cup \{a\}) > \mu(S - \{a\}) \right).$$

- Let us first prove that if $\mu(a) > 0.5$, then there exists a set S for which $\mu(S \cup \{a\}) > \mu(S \{a\})$.
- Let us take $S = \{x : \mu(x) \ge 0.5\}.$
- Here, $a \in S$, so $S \cup \{a\} = S$ and $\mu(S \cup \{a\}) = \mu(S)$.
- As we have shown in the proof of Lemma 1, for this set S, we have $\mu(S) \geq 0.5$, thus, $\mu(S \cup \{a\}) = \mu(S) \geq 0.5$.
- On the other hand, for the set $S \{a\}$, we have $1 \mu(a) < 0.5$ for $a \notin S \{a\}$, thus

$$\inf_{y \notin S - \{a\}} (1 - \mu(y)) \le 1 - \mu(a) < 0.5.$$

Outline

Representing a . . .

Analysis of the Situation

Relation to Possibility...

Why Not Use...

A Natural Question

This Question Is Non-..

Main Result

am resure

Auxiliary Result: . . .

Home Page
Title Page

A >>

Page 15 of 29

Go Back

Full Screen

Close

$$\mu(S - \{a\}) = \min\left(\inf_{x \in S - \{a\}} \mu(x), \inf_{y \notin S - \{a\}} (1 - \mu(y))\right) \le \inf_{y \notin S - \{a\}} (1 - \mu(y)) < 0.5.$$

- Thus here, $\mu(S \{a\}) < 0.5 \le \mu(S \cup \{a\})$, so indeed $\mu(S \cup \{a\}) > \mu(S \{a\})$.
- \bullet The existence of such a set S is proven.
- To complete the proof, let us prove that:
 - if there exists S for which $\mu(S \cup \{a\}) > \mu(S \{a\})$,
 - then $\mu(a) > 0.5$.
- Indeed, both $\mu(S \cup \{a\})$ and $\mu(S \{a\})$ are minima of infinitely many terms.

Relation to Possibility . . .

Why Not Use...

A Natural Question

Representing a . . .

Outline

Main Result

This Question Is Non-..

ani Kesuit

Auxiliary Result: . . .

Title Page

Home Page

44 >>

→

Page 16 of 29

Go Back

Full Screen

Close

16. Proof of Lemmas 2 (conclusion)

- Most of these terms are the same, the only difference is the term corresponding to x = a:
 - in $\mu(S \cup \{a\})$, we have the term $\mu(a)$ corresponding to $a \in S \cup \{a\}$, while
 - in $\mu(S \{a\})$, we have the term $1 \mu(a)$ corresponding to $a \notin S \{a\}$.
- If we had $\mu(a) \leq 0.5$, then we would have $\mu(a) \leq 1 \mu(a)$, and thus, we would have $\mu(S \cup \{a\}) \leq \mu(S \{a\})$.
- So, from the fact that $\mu(S \cup \{a\}) > \mu(S \{a\})$, we conclude that we cannot have $\mu(a) \leq 0.5$.
- Thus, we must have $\mu(a) > 0.5$.
- The lemma is proven.

17. Discussion

- According to Lemmas 1 and 2:
 - once we know the values $\mu(S)$ for all crisp sets S,
 - we can then, for each element $a \in X$, check whether $\mu(a) < 0.5$ and whether $\mu(a) > 0.5$.
- If for some element $a \in X$, none of these two inequalities is satisfied, then we can conclude that $\mu(a) = 0.5$.
- So, for these elements a, we can indeed reconstruct the value $\mu(a)$.
- Let us show that we can reconstruct $\mu(a)$ also for the elements a for which $\mu(a) < 0.5$ or $\mu(a) > 0.5$.

$$\mu(a) = \sup_{S: a \in S} \mu(S).$$

- To prove Lemma 3, we must prove:
 - that for every set S that contains the element a, we have $\mu(S) \leq \mu(a)$, and
 - that there exists a set S that contains the element a and for which $\mu(S) = \mu(a)$.
- Let us first prove that when $a \in S$, then $\mu(S) \leq \mu(a)$.
- Indeed, by definition of $\mu(S)$, we have

$$\mu(S) = \min\left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 - \mu(y))\right) \le \inf_{x \in S} \mu(x) \le \mu(a).$$

• Let us now prove that there exists a set S that contains the element a and for which $\mu(S) = \mu(a)$.

Representing a...

Analysis of the Situation

Relation to Possibility...

A Natural Question

This Question Is Non-..

Why Not Use . . .

Main Result

Outline

iam resair

Auxiliary Result: . . .

Home Page

Title Page

Page 19 of 29

Go Back

Full Screen

Close

- As such a set, we can take $S = \{x : \mu(x) \ge 0.5\} \cup \{a\}$.
- For this set, for elements $x \in S$ for which $\mu(x) \ge 0.5$, we have $\mu(x) \ge 0.5$.
- For the element $a \in S$, we have $\mu(a) < 0.5$.
- Thus, the smallest of the values $\mu(x)$ for all $x \in S$ is the value $\mu(a)$: $\inf_{x \in S} \mu(x) = \mu(a)$.
- For elements $y \notin S$, we have $\mu(y) < 0.5$, thus $1-\mu(y) > 0.5$ and hence,

$$\inf_{y \notin S} (1 - \mu(y)) \ge 0.5 > \mu(a) = \inf_{x \in S} \mu(x).$$

- So, $\mu(S) = \min \left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 \mu(y)) \right) = \mu(a).$
- The lemma is proven.

Representing a . . .

Outline

Analysis of the Situation

Relation to Possibility...

Why Not Use...

A Natural Question

This Question Is Non-..

Main Result

Auxiliary Result: . . .

Home Page
Title Page

(4 **)**

Page 20 of 29

r age

Go Back

Full Screen

Close

20. The Reconstruction Formula from Lemma 3 Makes Common Sense

- An element a is possible if there exists a set S containing this element a which is possible.
- From the common sense viewpoint, "there exists" means "or":
 - either one of the sets S containing a is possible,
 - or another one, etc.
- Thus, the degree that a is possible can be obtained by:
 - applying an "or"-operation
 - to statements "S is possible" corresponding to different $S \ni a$.
- There are infinitely many such sets, so we need to select an operation that does not lead to 1, thus max.

- Let X = [0, 1] and $\mu(x) = x$, then $\mu(1) = 1$.
- However, for all sets $S \ni 1$, we have $\mu(S) \le 0.5$.
- Indeed, if $0.5 \in S$, then:

$$\mu(S) = \min\left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 - \mu(y))\right) \le \inf_{x \in S} \mu(x) \le \mu(0.5) = 0.5.$$

• If $0.5 \notin S$, then:

$$\mu(S) = \min\left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 - \mu(y))\right) \le \inf_{y \notin S} (1 - \mu(y)) \le 1 - \mu(0.5) = 1 - 0.5 = 0.5.$$

• In both cases, $\mu(S) \leq 0.5$, thus, sup $\mu(S) \leq 0.5$ and thus, sup $\mu(S) < \mu(1) = 1$.

Outline Representing a . . .

Analysis of the Situation

Relation to Possibility . . .

Why Not Use . . .

A Natural Question

This Question Is Non-..

Main Result Auxiliary Result: . . .

Title Page

Home Page

44 **>>**

Page 22 of 29

Go Back

Full Screen

Close

$$\mu(a) = 1 - \sup_{S: a \notin S} \mu(S).$$

- To prove this equality, it is sufficient to prove:
 - that for every $S \not\ni a$, we have $\mu(S) \leq 1 \mu(a)$, and
 - that there exists $S \not\supseteq a$ for which $\mu(S) = 1 \mu(a)$.
- Let us first prove that when $a \notin S$, then $\mu(S) \leq 1 \mu(a)$; indeed, by definition of $\mu(S)$, we have

$$\mu(S) = \min\left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 - \mu(y))\right) \le \inf_{y \notin S} (1 - \mu(y)) \le 1 - \mu(a).$$

• Let us now prove that there exists a set S that does not contain the element a and for which $\mu(S) = 1 - \mu(a)$.

Representing a . . .

Outline

Analysis of the Situation

Relation to Possibility . . .

Why Not Use...

A Natural Question

Main Result

Auxiliary Result: . . .

Home Page

This Question Is Non-..

Title Page

>>

Page 23 of 29

Go Back

Full Screen

Close

- As such a set, we can take $S = \{x : \mu(x) \ge 0.5\} \{a\}$.
- For this set, for elements $y \notin S$, we have $\mu(y) < 0.5$ and thus, $1 \mu(y) > 0.5$.
- For the element $a \notin S$, we have $\mu(a) > 0.5$ and thus, $1 \mu(a) < 0.5$.
- Thus, the smallest of the values $1 \mu(y)$ for all $y \notin S$ is the value $1 \mu(a)$: $\inf_{y \notin S} (1 \mu(y)) = 1 \mu(a)$.
- For elements $x \in S$, we have $\mu(x) \ge 0.5$, thus $\inf_{x \in S} \mu(x) \ge 0.5 > 1 \mu(a) = \inf_{y \notin S} (1 \mu(y)).$
- So, $\mu(S) = \min \left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 \mu(y)) \right) = 1 \mu(a).$
- The lemma is proven, and so is the proposition.

Representing a . . .

Outline

Analysis of the Situation

Relation to Possibility...

Why Not Use...

A Natural Question

This Question Is Non-..

Main Result

Auxiliary Result: . . .

Home Page

Title Page

Page 24 of 29

Go Back

Full Screen

Close

24. Auxiliary Result: Which Crisp Set Is the Most Probable?

- In principle, we can have many different crisp sets S with different degrees $\mu(S)$.
- \bullet A natural question is: which crisp sets S are the most probable ones?
- In other words, which crisp sets have the largest degree $\mu(S)$?
- Proposition 2. For every membership function $\mu(x)$ and crisp set S, the following conditions are equivalent:
 - the set S has the largest possible value $\mu(S)$, and
 - the set S contains all a with $\mu(a) > 0.5$ and does not contain any a with $\mu(a) < 0.5$.
- Comment: it doesn't matter whether we include a with $\mu(a) = 0.5$ or not, the value $\mu(S)$ will not change.

Representing a . . .

Outline

- This result is in good accordance with common sense.
- Indeed:
 - the inequality $\mu(a) > 0.5$ is equivalent to $\mu(a) > 1 \mu(a)$, and
 - the inequality $\mu(a) < 0.5$ is equivalent to $\mu(a) < 1 \mu(a)$.
- So:
 - If our degree of confidence $\mu(a)$ that $a \in U$ is greater than the degree $1 \mu(a)$ that $a \notin U$,
 - then we add this element a to the set.
- On the other hand:
 - If our degree of confidence $1 \mu(a)$ that $a \notin U$ is greater than the degree $\mu(a)$ that $a \in U$,
 - then we do not add this element a to the set.

A Natural Question

This Question Is Non-..

Why Not Use . . .

Main Result

Auxiliary Result: . . .

Home Page

Title Page

Page 26 of 29

Go Back

Full Screen

Close

26. Remaining Questions

- An expert is often unable to describe his/her degree of confidence by a single number.
- In such situations, a reasonable idea is to allow an *interval* of possible values of degree of confidence.
- Interval-valued membership functions $\mu(x) = [\mu(x), \overline{\mu}(x)]$ were successful in many applications.
- In the interval case, it is natural to define $1 [\underline{a}, \overline{a}]$ as the set of all the values 1 a when $a \in [\underline{a}, \overline{a}]$, so:

$$1 - [\underline{a}, \overline{a}] = [1 - \overline{a}, 1 - \underline{a}].$$

• It is natural to define $\min([\underline{a}, \overline{a}], [\underline{b}, b])$ as the set of all the values $\min(a, b)$ when $a \in [\underline{a}, \overline{a}]$ and $b \in [\underline{b}, \overline{b}]$, so:

$$\min([\underline{a}, \overline{a}], [\underline{b}, \overline{b}]) = [\min(\underline{a}, \underline{b}), \min(\overline{a}, \overline{b})].$$

27. Remaining Questions (cont-d)

• In the interval-valued case, we can similarly define, for each crisp set S, the interval $\mu(S)$ as follows:

$$\mu(S) = \min \left(\inf_{x \in S} \mu(x), \inf_{y \notin S} (1 - \mu(y)) \right).$$

- It is then reasonable to ask a similar question:
 - once we know the intervals $\mu(S)$ corresponding to all possible crisp sets S,
 - can we uniquely reconstruct the original intervalvalued membership function $\mu(x)$?
- A similar question can be formulated when we consider type-2 fuzzy sets, when:
 - each value $\mu(x)$ is not necessarily an interval,
 - but can be any fuzzy number.

Representing a . . . Analysis of the Situation Relation to Possibility . . . Why Not Use . . . A Natural Question This Question Is Non-.. Main Result Auxiliary Result: . . . Home Page Title Page **>>** Page 28 of 29 Go Back Full Screen Close Quit

Outline

28. Acknowledgements

This work was supported in part:

- by the National Science Foundation grants
 - HRD-0734825 and HRD-1242122
 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
- by an award from Prudential Foundation.

