How to Detect Crisp Sets Based on Subsethood Ordering of Normalized Fuzzy Sets? How to Detect Type-1 Sets Based on Subsethood Ordering of Normalized Interval-Valued Fuzzy Sets?

Christian Servin¹, Olga Kosheleva², Vladik Kreinovich² ¹Computer Science and Information Technology Systems Department El Paso Community College, El Paso, Texas 79915, USA cservin@gmail.com ²University of Texas at El Paso, El Paso, Texas 79968, USA

olgak@utep.edu, vladik@utep.edu

Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Page 1 of 83 Go Back Full Screen Close Quit

>>

Introduction

Results

1. Introduction

- A fuzzy set is usually defined as function A from a certain set U (Universe of discourse) to [0,1].
- Traditional "crisp" sets can be viewed as particular cases of fuzzy sets, for which $A(a) \in \{0,1\}$ for all x.
- In most applications, we consider *normalized* fuzzy sets, i.e., fuzzy sets for which A(x) = 1 for some $x \in U$.
- For crisp sets, this corresponds to considering nonempty sets.
- For two crisp sets, A is a subset or B if and only if $A(x) \leq B(x)$ for all x.
- The same condition is used as a definition of the subsethood ordering between fuzzy sets:
 - \bullet a fuzzy set A is a *subset* of a fuzzy set B
 - if $A(x) \leq B(x)$ for all x.

Introduction Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 2 of 83 Go Back Full Screen

Close

2. Introduction (cont-d)

- Subsets $B \subseteq A$ which are different from the set A are called *proper* subsets of A.
- A natural question is:
 - if we have a class of all normalized fuzzy sets with the subsethood relation,
 - can we detect which of these fuzzy sets are crisp?
- It is known that:
 - ullet if we alow *all* possible fuzzy sets even non-normalized ones,
 - then we can detect crisp sets.
- In this talk, we show that such a detection is possible even if we restrict ourselves only to normalized sets.

Results

Introduction

Second Auxiliary Result
Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page
Title Page

()**)**

4

Page 3 of 83

Go Back

Full S

Full Screen

Close

3. Results

- We want to describe general crisp sets in terms of subsethood relation \subseteq between fuzzy sets.
- For this purpose, let us first describe some auxiliary notions in these terms.
- In this part of the talk, we only consider normalized fuzzy sets.

• Proposition.

- A normalized fuzzy set is a 1-element crisp set
- if and only if it has no proper normalized fuzzy subsets, i.e., if and only if $B \subseteq A$ implies B = A.
- Let us first prove that:
 - a 1-element crisp set $A = \{x_0\}$ (i.e., a set for which $A(x_0) = 1$ and A(x) = 0 for all $x \neq x_0$)
 - has the desired property.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 4 of 83 Go Back Full Screen Close

Quit

4. Proof of the First Auxiliary Result (cont-d)

- Indeed, if $B \subseteq A$, then $B(x) \le A(x)$ for all x.
- For $x \neq x_0$, we have A(x) = 0, so we have B(x) = 0 as well.
- ullet Since B is a normalized fuzzy set, it has to attain value 1 somewhere.
- We have B(x) = 0 for all $x \neq x_0$.
- So, the only point $x \in U$ at which B(x) = 1 is the point x_0 .
- Thus, we have $B(x_0) = 1$.
- So, indeed, we have B(x) = A(x) for all x, i.e., B = A.

Third Auxiliary Result

Main Result

Second Auxiliary Result

ain Resuit

Interval-Valued Case

Introduction

Results

First Conclusion
Second Conclusion

Possible Future Work

Home Page

Title Page

Go Back

Go Ba

Full Screen

Close

5. Proof of the First Auxiliary Result (cont-d)

- Vice versa, let us prove that:
 - ullet each normalized fuzzy set A which is different from a 1-element crisp set
 - has a proper normalized fuzzy subset.
- Indeed, since A is normalized, we have $A(x_0) = 1$ for some x_0 .
- Then, we can take $B = \{x_0\}$.
- Clearly, $B \subseteq A$, and, since A is not a 1-element crisp set, $B \neq A$.
- The proposition is proven.

6. Second Auxiliary Result

- **Definition.** By a 2-element set, we mean a normalized fuzzy set A for which A(x) > 0 for exactly two $x \in U$.
- Proposition.
 - Let A be a normalized fuzzy set A which is not a 1-element crisp set.
 - Then, the following two conditions are equivalent to each other:
 - A is a non-crisp 2-element set, and
 - the class $\{B: B \subseteq A\}$ is linearly ordered, i.e.:

if $B_1, B_2 \subseteq A$ then $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 7 of 83 Go Back Full Screen Close Quit

7. Third Auxiliary Result

- Proposition. A normalized fuzzy set A is a crisp 2element set \Leftrightarrow the following 2 conditions hold:
 - the set A itself is not a 1-element crisp set and not a 2-element non-crisp set, but
 - each proper norm. fuzzy subset $B \subseteq A$ is either a crisp 1-element sets or a non-crisp 2-element set.

8. Main Result

- Proposition. A normalized fuzzy set is crisp if and only if we have one of the following two cases:
 - A is a 1-element fuzzy set, or
 - for every subset $B \subseteq A$ which is a non-crisp 2element set, \exists a crisp 2-element set C for which

$$B \subseteq C \subseteq A$$
.

- Previous propositions show that the following properties can be described in terms of subsethood:
 - of being a crisp 1-element set,
 - of being a crisp 2-element set, and
 - of being a non-crisp 2-element set.
- Thus, this Proposition shows that crispness can indeed be described in terms of subsethood.

9. Interval-Valued Case

- The traditional fuzzy logic assumes that:
 - experts can meaningfully describe their degrees of certainty
 - by numbers from the interval [0,1].
- In practice, however, experts cannot meaningfully select a single number describing their certainty.
- Indeed, it is not possible to distinguish between, say, degrees 0.80 and 0.81.
- A more adequate description of the expert's uncertainty is:
 - when we allow to characterize the uncertainty
 - by a whole range of possible numbers, i.e., by an interval $[\underline{A}(x), \overline{A}(x)]$.

10. Interval-Valued Case (cont-d)

- This idea leads to *interval-valued* fuzzy numbers, i.e., mappings that assign,
 - \bullet to each element x from the Universe of discourse,
 - an interval $A(x) = [\underline{A}(x), \overline{A}(x)].$
- For two interval-valued degrees $A = [\underline{A}, \overline{A}]$ and $B = [\underline{B}, \overline{B}]$, it is reasonable to say that $A \leq B$ if

$$\underline{A} \leq \underline{B} \text{ and } \overline{A} \leq \overline{B}.$$

• Thus, we can define a subsethood relation between two interval-valued fuzzy sets A and B as

$$A(x) \leq B(x)$$
 for all x .

- An interval-valued fuzzy set is normalized if $\overline{A}(x_0) = 1$ for some x_0 .
- Traditional (*type-1*) fuzzy sets can be viewed as particular cases of interval-valued fuzzy sets.

Introduction

Results

Second Auxiliary Result
Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 11 of 83

Go Back

Full Screen

Close

Interval-Valued Case (cont-d) 11.

• Namely, they correspond to "degenerate" intervals

- Here, we have a similar problem:
 - can we detect traditional fuzzy sets
 - based only on the subsethood relation between intervalvalued fuzzy sets?
- Let us show that this is indeed possible.

Third Auxiliary Result

Main Result

Interval-Valued Case

Introduction

Results

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

>>

Page 12 of 83

Go Back

Full Screen

Close

12. Interval-Valued: First Auxiliary Result

• **Definition.** By an uncertain 1-element set, we mean a normalized interval-valued fuzzy set A for which

$$\exists x_0 \in U (A(x_0) = [0, 1] \& (A(x) = [0, 0] \text{ for all other } x)).$$

- Proposition. A normalized interval-valued fuzzy set A:
 - is an uncertain 1-element set if and only if
 - it has no proper normalized subsets.
- So, we can determine uncertain 1-element sets based on the subsethood relation.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 13 of 83 Go Back Full Screen Close Quit

13. Interval-Valued: Second Auxiliary Result

• **Definition.** By a basic 1-element set, we mean a normalized interval-valued fuzzy set A for which:

$$\exists x_0 \in U ((A(x_0) = [a, 1] \text{ for some } a > 0) \& (A(x) = [0, 0] \text{ for all } x \neq x_0)).$$

- **Definition.** By a basic 2-element set, we mean a norm. interval-valued fuzzy set A s.t. for some $x_0 \neq x_1$:
 - $A(x_0) = [0, 1],$
 - $A(x_1) = [0, a]$ for some $a \in (0, 1)$, and
 - A(x) = [0,0] for all other x.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page 44 **>>** Page 14 of 83 Go Back Full Screen Close Quit

14. Interval-Valued: 2nd Aux. Result (cont-d)

- Proposition.
 - Let A be a normalized interval-valued fuzzy set which is not an uncertain 1-element set.
 - Then, the following two conditions are equivalent to each other:
 - the class $\{B : B \subseteq A\}$ of all subsets of A is linearly ordered;
 - A is either a basic 1-element set or a basic 2element set.
- So, we can determine, based on the subsethood relation, whether A is a basic set.

15. Interval-Valued: Third Auxiliary Result

- Proposition. If A is a basic 1- or 2-element set, then the following properties are equivalent:
 - A is a crisp 1-element set;
 - no proper superset of A is a basic 1-element set or a basic 2-element set.
- So, we can determine crisp 1-element sets based only on the subsethood relation.

16. Interval-Valued: Fourth Auxiliary Result

- Proposition. For a normalized interval-valued fuzzy set, the following two conditions are satisfied:
 - A is either an uncertain 1-element set or a basic 1-element set;
 - A is a subset of a crisp 1-element set.
- **Proof:** straightforward.
- We know how to describe, based on the subsethood relation:
 - when A is an uncertain 1-element set, and
 - when A is a basic set,
- We can therefore determine basic 1-element sets and basic 2-element sets based on subsethood relation only.

Introduction Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 17 of 83 Go Back Full Screen Close Quit

17. Interval-Valued: Fifth Auxiliary Result

- Definition.
 - Let A be a basic 2-element set, with:
 - \bullet $A(x_0) = [0, 1],$
 - $A(x_1) = [0, a]$ for some $a \in (0, 1)$, and
 - A(x) = [0,0] for all other x.
 - Then, by its type-1 cover, we mean a normalized interval-valued fuzzy set A' for which:
 - $A'(x_0) = [1, 1],$
 - $A'(x_1) = [a, a], and$
 - A'(x) = [0, 0] for all other x.
- Let us show that the type-1 cover can be determined in terms of the subsethood relation.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 18 of 83 Go Back Full Screen Close Quit

18. Fifth Auxiliary Result (cont-d)

- Proposition. Let A be a basic 2-element set. Then:
 - its type-1 cover A' is the \subseteq -smallest normalized interval-valued fuzzy set
 - that contains all the normalized interval-valued sets $B \supseteq A$ for which the following conditions hold:
 - the set B is not a basic 2-element set;
 - the class of all basic 2-element subsets of B is linearly ordered;
 - the class $\{C: C \text{ is normalized } \& A \subseteq C \subseteq B\}$ is linearly ordered; and
 - the set B has only one uncertain 1-element subset.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 19 of 83 Go Back Full Screen Close Quit

19. Interval-Valued: Main Result

- Definition.
 - Let A be an uncertain 1-element set, with $A(x_0) = [0,1]$, and A(x) = [0,0] for all other x.
 - Then, by its type-1 cover, we mean a crisp set

$$A' = \{x_0\}.$$

- Proposition. A normalized interval-valued fuzzy set is a type-1 set \Leftrightarrow the following conditions hold:
 - if $B \subseteq A$ for some uncertain 1-element set, then $B' \subset A$, and
 - if $B \subseteq A$ for some basic 2-element set, then

$$B' \subseteq A$$
.

Introduction Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 20 of 83 Go Back Full Screen Close Quit

20. Interval-Valued: Main Result (cont-d)

- We have shown that following can all be described in terms of the subsethood relation:
 - the operation B',
 - uncertain 1-element sets, and
 - basic 2-element sets.
- We can thus conclude that:
 - we can detect type-1 sets
 - based on the subsethood relation between normalized interval-valued fuzzy sets.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 21 of 83 Go Back Full Screen Close Quit

21. First Conclusion

- In this talk, we consider the following situation.
- We are given the class of all possible normalized fuzzy sets A on a given Universe of discourse X.
- We do not know the values A(x) for $x \in X$.
- We do not even know which of these fuzzy sets are actually crisp and which are not.
- The only information we have about these fuzzy sets in which of them are subsets of others.
- Based on this information, can we detect crisp sets?
- The first conclusion of this talk is that yes, such detection *is* possible.

22. Second Conclusion

- Suppose now that:
 - instead of the class of all "usual" (type-1) normalized fuzzy sets,
 - we now have the class of all normalized *interval-valued* fuzzy sets.
- We do not know the values $A(x) = [\underline{A}(x), \overline{A}(x)].$
- We do not even know which of these interval-valued fuzzy sets are actually regular (type-1) fuzzy sets.
- The only information that we have about these sets in which of them are subsets of others.
- Based on this information, can we detect type-1 fuzzy sets?
- The second conclusion of this talk is that yes, such detection is also possible.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 23 of 83 Go Back Full Screen Close Quit

23. Possible Future Work

- The above results assume that we know *exactly*:
 - which pairs (A, B) of given fuzzy sets are subsets of each other $(A \subseteq B)$ and
 - which are not $(A \not\subseteq B)$.
- Sometimes:
 - while a fuzzy set A is, strictly speaking, not a subset of a fuzzy set B,
 - \bullet it is "almost" a subset, in the sense that few elements of A are outside B.
- To capture this intuition, researchers have developed subsethood measures $\sigma(A, B)$.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 24 of 83 Go Back Full Screen Close Quit

- For such measures:
 - if a fuzzy set A is a subset of a fuzzy set B, then $\sigma(A,B)=1$, and
 - if a fuzzy set A is "almost" a subset of a fuzzy set B, then $\sigma(A, B)$ is smaller than 1 but close to 1;
- These measures turned out to be very useful in image processing.
- The first seemingly natural question is then: what if
 - instead of simply knowing which fuzzy set is a subset of which,
 - we know, for each pair (A, B), the degree $\sigma(A, B)$ to which A is a subset of B.
- Can we then detect crisp set?
- The answer to this question is: definitely yes.

Introduction

Results

Second Auxiliary Result

Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Go Back

Full Screen

Close

- Indeed:
 - if we know the values $\sigma(A, B)$ for all A and B,
 - then, by checking when $\sigma(A, B) = 1$, we will also know when $A \subseteq B$,
 - and thus, based on our first result, we can detect crisp sets.
 - But what if only know the degrees $\sigma(A, B)$ with some uncertainty $\varepsilon > 0$?
 - This is a natural assumption, taking into account that in practice, all the values are usually known with some uncertainty.
 - In this case, we probably cannot exactly detect which fuzzy sets are crisp.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 26 of 83 Go Back Full Screen Close

Quit

26. Possible Future Work (cont-d)

- But can we then,
 - based on the imprecisely known subsethood degrees,
 - detect fuzzy sets which are, in some reasonable sense, almost crisp?
- This would be interesting to find out.

27. Acknowledgments

This work was supported in part by the US National Science Foundation grant HRD-1242122.

Introduction Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 28 of 83 Go Back Full Screen Close Quit

28. Second Auxiliary Result: Reminder

- **Definition.** By a 2-element set, we mean a normalized fuzzy set A for which A(x) > 0 for exactly two $x \in U$.
- Proposition.
 - Let A be a normalized fuzzy set A which is not a 1-element crisp set.
 - Then, the following two conditions are equivalent to each other:
 - A is a non-crisp 2-element set, and
 - the class $\{B: B \subseteq A\}$ is linearly ordered, i.e.:

if $B_1, B_2 \subseteq A$ then $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 29 of 83 Go Back Full Screen Close Quit

- Indeed, since A is a normalized fuzzy set, we must have $A(x_0) = 1$ for some $x_0 \in U$.
- Since A is a 2-element set, there must be one more value $x \in U$ for which A(x) > 0.
- Let us denote this value by x_1 . So, we have:
 - $\bullet \ A(x_0) = 1,$
 - $A(x_1) > 0$ and
 - A(x) = 0 for all other $x \in U$.
- If we had $A(x_1) = 1$, then A would be a crisp set namely, we would have $A = \{x_0, x_1\}$.

Results

Introduction

Second Auxiliary Result
Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

44 >>>

4 **-**

Page 30 of 83

Go Back

Full Screen

Close

Close

- If B is a normalized fuzzy set for which $B \subseteq A$, then:
 - for all x different from x_0 and x_1 ,
 - we have $B(x) \leq A(x) = 0$ and thus, B(x) = 0.
- Since B is normalized, we have B(x) = 1 for some x.
 - This x cannot be different from x_0 and x_1 because then B(x) = 0.
 - This x cannot be equal to x_1 , since then we would have $1 = B(x_1) \le A(x_1) < 1$ and 1 < 1.
- Thus, this x must be equal to x_0 , $B(x_0) = 1$.

Second Auxiliary Result

Introduction

Results

Second Auxiliary Result
Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 31 of 83

Go Back

Full Screen

Close

Introduction

Results

First Conclusion

Full Screen

Close

Quit

• So all fuzzy normalized subsets R of the set A have

- \bullet So, all fuzzy normalized subsets B of the set A have the following form:
 - $\bullet \ B(x_0) = 1,$
 - $B(x_1) \leq A(x_1)$, and
 - B(x) = 0 for all other x.
- For two such subsets, we can have:
 - either $B_1(x_1) \le B_2(x_1)$,
 - or $B_2(x_1) \leq B_1(x_1)$.
- One can easily check that:
 - if $B_1(x_1) \leq B_2(x_1)$, then $B_1(x) \leq B_2(x)$ for all x and thus, $B_1 \subseteq B_2$;
 - similarly, if $B_2(x_1) \leq B_1(x_1)$, then $B_2(x) \leq B_1(x)$ for all x and thus, $B_2 \subseteq B_1$.

32. Proof of the Second Auxiliary Result (cont-d)

- So, for every two normalized fuzzy subsets B_1 and B_2 of the set A, we have either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$.
- Thus, the class of all such subsets is indeed linearly ordered.
- To complete the proof, let us now prove that:
 - if a normalized fuzzy set A is not a 1-element fuzzy set and not a non-crisp 2-element set,
 - then the class $\{B: B \subseteq A\}$ is *not* linearly ordered,
 - i.e., there exists normalized fuzzy subsets $B_1 \subseteq A$ and $B_2 \subseteq A$ for which $B_1 \not\subseteq B_2$ and $B_2 \not\subseteq B_1$.
- The fact that the set A is not a 1-element set means that A(x) > 0 for at least two different values x.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 33 of 83 Go Back Full Screen Close Quit

33. Proof of the Second Auxiliary Result (cont-d)

- By definition, a non-crisp 2-element set is a normalized fuzzy set:
 - which is a 2-element set and
 - which is not crisp.
- So, if a normalized fuzzy set A is not a non-crisp 2-element set, this means that it is:
 - either not a 2-element set
 - or it is a crisp 2-element set.
- Let us show that in both cases, we can find subsets $B_1 \subseteq A$ and $B_2 \subseteq A$ for which $B_1 \not\subseteq B_2$ and $B_2 \not\subseteq B_1$.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 34 of 83 Go Back Full Screen Close Quit

- in addition to the point x_0 at which $A(x_0) = 1$,
- there exist at least two other points x_1 and x_2 for which $A(x_1) > 0$ and $A(x_1) > 0$.
- In this case, we can take the following sets B_1 and B_2 :
 - $B_1(x_0) = B_2(x_0) = 1;$
 - $B_1(x_1) = A(x_1)$ and $B_2(x_1) = 0$;
 - $B_2(x_1) = 0$ and $B_2(x_2) = A(x_2)$, and
 - $B_1(x) = B_2(x)$ for all other x.
- One can see that $B_1(x) \leq A(x)$ and $B_2(x) \leq A(x)$ for all x, so indeed $B_1 \subseteq A$ and $B_2 \subseteq A$.

Introduction

Second Auxiliary Result
Third Auxiliary Result

Main Result

Results

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

44 >>>

→

Page 35 of 83

Go Back

Full Screen

Close

- However, here:
 - $B_1(x_1) = A(x_1) > 0 = B_2(x_1)$, so we cannot have $B_1 \subseteq B_2$, because that would imply $B_1(x_1) \le B_2(x_1)$;
 - similarly, $B_2(x_2) = A(x_2) > 0 = B_1(x_2)$,
 - so we cannot have $B_2 \subseteq B_1$, because that would imply $B_2(x_2) \leq B_1(x_2)$.
- So, we indeed have $B_1 \not\subseteq B_2$ and $B_2 \not\subseteq B_1$.
- Let us now consider the case when A is a 2-element crisp set, i.e., when $A = \{x_0, x_1\}.$
- In this case, we can take $B_1 = \{x_0\}$ and $B_2 = \{x_1\}$.
- Clearly, $B_1 \subseteq A$, $B_2 \subseteq A$, $B_1 \not\subseteq B_2$, and $B_2 \not\subseteq B_1$.
- So, the proposition is proven.

Results

Introduction

Second Auxiliary Result

Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 36 of 83

Go Back

Full Screen

Close

36. Third Auxiliary Result

- Proposition. A normalized fuzzy set A is a crisp 2-element set \Leftrightarrow the following 2 conditions hold:
 - the set A itself is not a 1-element crisp set and not a 2-element non-crisp set, but
 - each proper norm. fuzzy subset $B \subseteq A$ is either a crisp 1-element sets or a non-crisp 2-element set.
- If A is a 2-element crisp set, i.e., if $A = \{x_0, x_1\}$ for some $x_0 \neq x_1$, then it is clearly:
 - not a 1-element crisp set, and
 - not a non-crisp 2-element set.
- Let us prove that in this case, every proper normalized fuzzy subset $B \subseteq A$ is
 - either a 1-element crisp set
 - or a non-crisp 2-element set.

Introduction Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 37 of 83 Go Back Full Screen

Close

- Here, A(x) > 0 for only two values $x = x_0$ and $x = x_1$, and $B(x) \leq A(x)$ for all x.
- So, the value B(x) can be positive also for at most two values x_i .
- If B(x) > 0 for only one value x, then, since B is normalized, for this x, we must have B(x) = 1.
- Thus, we have $B = \{x\}$, i.e., B is a 1-element crisp set.
- If B(x) > 0 for two different values x, this means that we have $B(x_0) > 0$ and $B(x_1) > 0$.
- Since the set B is normalized, one of these value must be equal to 1.
- If the second one is equal to 1, we will have B = Abut B is a proper subset.

Second Auxiliary Result Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page Title Page

44 **>>**

Page 38 of 83

Go Back

Full Screen

Close

38. Third Auxiliary Result (cont-d)

- Thus, one of the values $B(x_i)$ is smaller than 1 thus, B is a non-crisp 2-element set.
- Let us now prove that:
 - \bullet if a normalized fuzzy set A is not a 2-element crisp set,
 - then one of the above properties is not satisfied.
- In other words, in this case:
 - either A is 1-element crisp set or a 2-element noncrisp set,
 - or one of its proper subsets $B \subseteq A$ is *not* a non-crisp 2-element set.

Introduction Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 39 of 83 Go Back Full Screen Close

- In other words, we want to prove that if A is:
 - not a crisp 1-element set, not a crisp 2-element set, and not a non-crisp 2-element set,
 - then one of its proper subsets $B \subseteq A$ is not a non-crisp 2-element set.
- The condition on A means that it is:
 - not a 1-element set and
 - not a 2-element set.
- This means that there must exist at least three different values $x \in U$ for which A(x) > 0.
- For one of these values, we have $A(x_0) = 1$.
- Let us denote the other two values by x_1 and x_2 , then $A(x_1) > 0$ and $A(x_2) > 0$.

Results

Introduction

Second Auxiliary Result
Third Auxiliary Result

Main Result

Tam Ttobare

Interval-Valued Case
First Conclusion

st conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

4 >>

→

Page 40 of 83

Go Back

Full Screen

Close

Third Auxiliary Result

Introduction

Results

• Let us now take the following normalized fuzzy set B:

- $\bullet B(x_1) = 0.5 \cdot A(x_1),$
- $B(x_2) = 0.5 \cdot A(x_2)$, and
- B(x) = A(x) for all other x.
- Here, $B(x_0) = A(x_0) = 1$, so B is indeed a normalized fuzzy set.
- One can easily check that $B(x) \leq A(x)$ for all x, so it is indeed a subset of A.
- Since $A(x_1) > 0$, we have $B(x_1) = 0.5 \cdot A(x_1) \neq A(x_1)$, so B is a proper subset of A.
- However, $B(x_0) = 1 > 0$, $B(x_1) > 0$, and $B(x_2) > 0$, so B is not a 2-element set.
- The proposition is proven.

Main Result

Interval-Valued Case First Conclusion

Second Conclusion Possible Future Work

Title Page

Home Page

>>

Page 41 of 83

Go Back

Full Screen

Close

41. Main Result

- Proposition. A normalized fuzzy set is crisp if and only if we have one of the following two cases:
 - A is a 1-element fuzzy set, or
 - for every subset $B \subseteq A$ which is a non-crisp 2element set, \exists a crisp 2-element set C for which

$$B \subseteq C \subseteq A$$
.

- Let us first prove that if A is a crisp set, then:
 - either it is a 1-element crisp set,
 - or for every non-crisp 2-element set $B \subseteq A$, there exists a crisp 2-element set C for which $B \subseteq C \subseteq A$.
- \bullet Indeed, let B be a non-crisp 2-element set.

• $B(x_0) = 1$,

we have:

- $0 < B(x_1) < 1$, and
- B(x) = 0 for all other x.
- Since $B \subseteq A$, we have:
 - $1 = B(x_0) \le A(x_0)$ thus $A(x_0) = 1$; and
 - $0 < B(x_2) \le A(x_1)$ thus $A(x_1) > 0$.
- The set A is crisp, so $A(x_1)$ can be either 0 or 1.
- Since $A(x_1) > 0$, we must have $A(x_1) = 1$.
- Thus, for a 2-element crisp set $C = \{x_0, x_1\}$, we have

$$B \subseteq C \subseteq A$$
.

Second Auxiliary Result
Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Go Back

- " -

Full Screen

Close

Ciose

- To complete our proof, let us prove that:
 - \bullet if a normalized crisp set A is *not* a crisp set,
 - then \exists a non-crisp 2-element set $B \subseteq A$
 - for which no crisp 2-element set C satisfies the property $B \subseteq C \subseteq A$.
- By definition, for a crisp set, all the values A(x) are either 0s or 1s.
- So, the fact that A is not crisp means that we have $0 < A(x_1) < 1$ for some $x_1 \in U$.
- Since A is normalized, $\exists x_0 (A(x_0) = 1)$.

Introduction Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 44 of 83 Go Back Full Screen Close Quit

• $B(x_0) = 1$,

then

- $0 < B(x_1) = A(x_1) < 1$, and
- \bullet B(x) = 0 for all other x.
- Clearly, B is a non-crisp 2-element set and $B \subseteq A$.
 - If we had $B \subseteq C \subseteq A$ for some crisp 2-element set C,
 - due to $1 = B(x_0) \le C(x_0)$ and $B(x_1) \le C(x_1)$,
 - we would have $C(x_0) = 1$ and $C(x_1) > 0$ hence $C(x_1) = 1$ (since C is crisp).
 - But in this case, $C(x_1) = 1 > A(x_1)$, so we cannot have $C \subseteq A$.
 - The proposition is proven.

Second Auxiliary Result

Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion Second Conclusion

Possible Future Work

Home Page

Title Page **>>**

Page 45 of 83

Go Back

Full Screen

Close

45. Interval-Valued: First Auxiliary Result

• **Definition.** By an uncertain 1-element set, we mean a normalized interval-valued fuzzy set A for which

 $\exists x_0 \in U (A(x_0) = [0, 1] \& (A(x) = [0, 0] \text{ for all other } x)).$

- Proposition. A normalized interval-valued fuzzy set A:
 - is an uncertain 1-element set if and only if
 - it has no proper normalized subsets.
- Let us first prove that for an uncertain 1-element set A, there are no proper subsets.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 46 of 83 Go Back Full Screen Close Quit

Introduction

- Indeed, if $A(x_0) = [0, 1]$, A(x) = [0, 0] for all $x \neq x_0$, and $B(x) \leq A(x)$, then:
 - for $x \neq x_0$, from $\underline{B}(x) \leq \underline{A}(x) = 0$ and $\overline{B}(x) \leq \overline{A}(x) = 0$, it follows that $\underline{B}(x) = \overline{B}(x) = 0$, so

$$B(x) = [0, 0] = A(x);$$

• for $x = x_0$, from $\underline{A}(x_0) \leq \overline{A}(x_0) = 0$, it follows that

$$\underline{B}(x_0) = 0 = \underline{A}(x_0).$$

- On the other hand, B is a normalized interval-valued fuzzy set, so we must have $\overline{B}(x) = 1$ for some x.
- This cannot be for $x \neq x_0$, since then $\overline{B}(x) = 0$.
- So, the only remaining option is $x = x_0$.
- Hence, $\overline{B}(x_0) = 1$, thus, $\overline{B}(x_0) = \overline{A}(x_0)$.

Introduction

Results

Second Auxiliary Result
Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 47 of 83

Go Back

Full Screen

Close

Interval-Valued: 1st Auxiliary Result (cont-d)

- Therefore, if $B \subseteq A$, then B = A.
- ullet So, the normalized interval-valued fuzzy sets A does not have any proper subsets.
- To complete the proof, let us prove that:
 - if a normalized interval-valued fuzzy set has no proper subsets,
 - then it is an uncertain 1-element set.
- Indeed, since A is normalized, there exists an element x_0 for which $\overline{A}(x_0) = 1$.
- Then, as one can easily check, we have $B \subseteq A$, where:
 - $B(x_0) = [0, 1]$, and
 - B(x) = [0, 0] for all other x
- Since A has no proper subsets, we thus conclude that A = B, i.e., that A is an uncertain 1-element set. QED

Results

Third Auxiliary Result

Second Auxiliary Result

Introduction

Main Result

Interval-Valued Case

First Conclusion
Second Conclusion

Possible Future Work

Title Page

>>

Home Page

44

•

Page 48 of 83

Go Back

Full Car

Full Screen

Close

• **Definition.** By a basic 1-element set, we mean a normalized interval-valued fuzzy set A for which:

$$\exists x_0 \in U ((A(x_0) = [a, 1] \text{ for some } a > 0) \& (A(x) = [0, 0] \text{ for all } x \neq x_0)).$$

- **Definition.** By a basic 2-element set, we mean a norm. interval-valued fuzzy set A s.t. for some $x_0 \neq x_1$:
 - $A(x_0) = [0, 1],$
 - $A(x_1) = [0, a]$ for some $a \in (0, 1)$, and
 - A(x) = [0,0] for all other x.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 49 of 83 Go Back Full Screen Close Quit

Introduction

• Proposition.

- Let A be a normalized interval-valued fuzzy set which is not an uncertain 1-element set.
- Then, the following two conditions are equivalent to each other:
 - the class $\{B : B \subseteq A\}$ of all subsets of A is linearly ordered;
 - A is either a basic 1-element set or a basic 2element set.
- Let us first prove that:
 - \bullet if A is a basic 1-element set or a basic 2-element set,
 - then the class of all its subsets is linearly ordered.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 50 of 83 Go Back Full Screen Close Quit

Introduction

- ullet Let us first consider the case when A is a basic 1-element set.
- In this case, $B \subseteq A$ implies $\underline{B}(x) = \overline{B}(x) = 0$ for all $x \neq x_0$.
- Since B is normalized, then, similarly to the previous proofs, we get $\overline{B}(x_0) = 1$.
- The final inequality $\underline{B}(x_0) \leq \underline{A}(x_0) = a$ implies that for $b \stackrel{\text{def}}{=} \underline{B}(x_0)$, we have $b \leq a$.
- \bullet So, the set B has the following form:
 - B(x) = [0, 0] for all $x \neq x_0$, and
 - $B(x_0) = [b, 1]$, where we denoted $b = \underline{B}(x_0)$.
- One can easily check that the class of such sets is linearly ordered.

Results

Introduction

Second Auxiliary Result

Third Auxiliary Result

Main Result

laın Ke

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

>>

←

Page 51 of 83

Go Back

Full Screen

Clas

Close

- if $b_1 \leq b_2$, then $B_1 \subseteq B_2$, and
- vice versa, if $b_2 \leq b_1$, then $B_2 \subseteq B_1$.

corresponding values b by b_1 and b_2 , then:

- \bullet Let us consider the case when A is a basic 2-element set.
- Let $B \subseteq A$. Then, from $B(x) \leq A(x)$, we conclude:
 - that B(x) = [0,0] when $x \neq x_0$ and $x \neq x_1$, and
 - that $\underline{B}(x_0) = \underline{B}(x_1) = 0$.
- The set B is normalized, so $\overline{B}(x) = 1$ for some x.
 - This x cannot be different from x_0 and x_1 , since for such x, we have $\overline{B}(x) = 0 < 1$.
 - It cannot be equal to x_1 , since we have

$$\overline{B}(x_1) \le \overline{A}(x_1) = a < 1.$$

Second Auxiliary Result
Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page
Title Page

→

Page 52 of 83

Go Back

Full Screen

Close

- Thus, the only possible element x is $x = x_0$, hence we have $\overline{B}(x_0) = 1$.
- The final inequality $\overline{B}(x_1) \leq \overline{A}(x_1) = a$ implies that for $b \stackrel{\text{def}}{=} \overline{B}(x_1)$, we have $b \leq a$.
- \bullet So, the set B has the following form:
 - B(x) = [0, 0] when $x \neq x_0$ and $x \neq x_1$;
 - $B(x_0) = [0, 1]$, and
 - $B(x_1) = [0, b]$, where $b = \overline{B}(x_1)$.
- One can easily check that the class of such sets is linearly ordered.

Second Auxiliany Result

Second Auxiliary Result
Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Possible Future Work

Second Conclusion

Home Page

Title Page

Page 53 of 83

Go Back

Full Screen

Close

- Namely, if for two such sets B_1 and B_2 , we denote the corresponding values b by b_1 and b_2 , then:
 - if $b_1 \leq b_2$, then $B_1 \subseteq B_2$, and
 - vice versa, if $b_2 \leq b_1$, then $B_2 \subseteq B_1$.
- Let us now prove that:
 - if the class of all normalized subsets of a normalized fuzzy interval-valued set A is linearly ordered,
 - then A is either a basic 1-element set or a basic 2-element set.
- Since the set A is normalized, there exists an element $x_0 \in U$ for which $\overline{A}(x_0) = 1$.
- Let us consider two possible cases: $\underline{A}(x_0) > 0$ and $\underline{A}(x_0) = 0$.

Correct Associlians Brooks

Second Auxiliary Result
Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 54 of 83

Go Back

Full Screen

Close

- Let us first consider he case when $\underline{A}(x_0) > 0$.
- Let us prove that in this case, we have a basic 1-element set, i.e., that A(x) = [0, 0] for all $x \neq x_0$.
- We will prove this by contradiction.
- Let us assume that $\overline{A}(x) > 0$ for some $x \neq x_0$.
- \bullet Then, we can consider the following two subsets of A:
 - $B_1(x_0) = A(x_0), B_2(x_0) = [0, 1];$
 - $B_2(x_1) = [0, 0], B_2(x_1) = A(x_1), \text{ and}$
 - $A(x) = B_i(x) = [0, 0]$ for all other $x \in U$.
- One can easily check that $B_1 \subseteq A$ and $B_2 \subseteq A$.

Coon d Amilian Book

Second Auxiliary Result

Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page
Title Page

← →→

Page 55 of 83

Go Back

Full Screen

Close

- However:
 - we have $\underline{B}_1(x_0) = \underline{A}(x_0) > 0 = \underline{B}_2(x_0)$, hence we cannot have $B_1 \subseteq B_2$;
 - on the other hand, $\overline{B}_2(x_1) = \overline{A}(x_1) > 0 = \overline{B}_1(x_1)$, hence we cannot have $B_2 \subseteq B_1$.
- The fact that here $B_1 \not\subseteq B_2$ and $B_2 \not\subseteq B_1$ shows that $\overline{A}(x) > 0$ is impossible.
- Thus, $\overline{A}(x) = 0$ for all $x \neq x_0$, so A is indeed a basic 1-element set.
- Let us now consider he case when $\underline{A}(x_0) = 0$.
- Let us prove that in this case, we have a basic 2-element set, i.e., that:
 - $A(x_1) = [0, a]$ for some $x_1 \in U$ and some $a \in (0, 1)$,
 - and A(x) = [0, 0] for all other x.

.

Second Auxiliary Result

Introduction

Results

Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 56 of 83

Go Back

Full Screen

- CI

Close

- Indeed, since $A(x_0) = [0,1]$, but the set A is not an uncertain 1-element set, $\exists x_1 \neq x_0 \, (\overline{A}(x_1) > 0)$.
- Let us prove that in this case, A(x) = [0,0] for all other x.
- We prove this by contradiction.
- Let us assume that for some x_2 , we have $x_2 \neq x_0$, $x_2 \neq x_1$ and $\overline{A}(x_2) > 0$.
- In this case, we can form the following B_1 and B_2 ;
 - $B_1(x_0) = B_2(x_0) = [0, 1];$
 - $B_1(x_1) = A(x_1), B_2(x_1) = [0, 0];$
 - $B_1(x_2) = [0, 0], B_2(x_2) = A(x_2);$ and
 - $B_1(x) = B_2(x) = [0, 0]$ or all other x.

Results

Second Auxiliary Result
Third Auxiliary Result

Main Result

Introduction

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 57 of 83

Go Back

GO Buch

Full Screen

Close

- Clearly, $B_1 \subseteq A$ and $B_2 \subseteq A$, but:
 - $B_1(x_1) > 0 = B_2(x_1)$, so we cannot have $B_1 \subseteq B_2$;
 - $\overline{B}_2(x_2) = \overline{A}(x_2) > 0 = \underline{B}_1(x_2)$, so we cannot have $B_2 \subseteq B_1$.
- This contradicts to our assumption that the class of all subsets of A is linearly ordered.
- Thus, A(x) = [0, 0] for all element x which are different from x_0 and x_1 .
- Let us prove, by contradiction, that $\underline{A}(x_1) = 0$.
- Indeed, if $\underline{A}(x_1) > 0$, then we can form the following sets B_1 and B_2 :
 - $B_1(x_0) = B_2(x_0) = [0, 1];$
 - $B_1(x_1) = [0, \overline{A}(x_1)], B_2(x_1) = 0.5 \cdot \underline{A}(x_1);$
 - $B_1(x) = B_2(x) = [0, 0]$ for all other x.

Second Auxiliary Result

Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 58 of 83

Go Back

Full Screen

Close

- One can easily check that $B_1 \subseteq A$ and $B_2 \subseteq A$, but:
 - $\overline{B}_1(x_1) = \overline{A}(x_1) \ge \underline{A}(x_1) > 0.5 \cdot \underline{A}(x_1) = \overline{B}_2(x_1)$, so we do not have $B_1 \subseteq B_2$;
 - on the other hand, $\underline{B}_2(x_1) = 0.5 \cdot \underline{A}(x_1) > 0 = \underline{B}_1(x_1)$, so we do not have $B_2 \subseteq B_1$ either.
- This contradicts to our assumption that the class of all subsets of A is linearly ordered.
- This contradiction shows that $\underline{A}_1(x_1) = 0$.
- Finally, let us prove that $A(x_1) < 1$.

58.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 59 of 83 Go Back Full Screen Close Quit

Introduction

- Indeed, if $\overline{A}(x_1) = 1$, i.e., if $A(x_1) = [0, 1]$, then we can find $B_1, B_2 \subseteq A$ for which $B_1 \not\subseteq B_2$ and $B_2 \not\subseteq B_1$:
 - $B_1(x_0) = [0, 1], B_2(x_0) = [0, 0];$
 - $B_1(x_1) = [0, 0], B_2(x_1) = A(x_1) = [0, 1], \text{ and}$
 - $B_1(x) = B_2(x) = [0, 0]$ for all other x.
- Then:
 - $\overline{B}_1(x_0) = 1 > \overline{B}_2(x_0)$, so we cannot have $B_1 \subseteq B_2$;
 - $\overline{B}_2(x_1) = 1 > 0 = \overline{B}_1(x_1)$, so $B_2 \not\subseteq B_1$.
- Contradiction show that we cannot have $\overline{A}(x_1) = 1$, thus $\overline{A}(x_1) < 1$.
- Thus, in this case, A is a basic 2-element set.
- The proposition is proven.

Second Auxiliany Popult

Second Auxiliary Result

Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion
Second Conclusion

Possible Future Work

Home Page

(4)

Title Page

Page 60 of 83

Go Back

Full Screen

Close

60. Interval-Valued: 3rd Auxiliary Result

- Proposition. If A is a basic 1- or 2-element set, then the following properties are equivalent:
 - A is a crisp 1-element set;
 - no proper superset of A is a basic 1-element set or a basic 2-element set.
- If $A = \{x_0\}$, then clearly A cannot have any proper supersets which are basic 1- or 2-element sets.
- Vice versa:
 - if A is a basic 1-element set with $\underline{A}(x_0) < 1$,
 - then $B = \{x_0\}$ is its proper superset which is a a 1-element basic set.

Introduction Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 61 of 83 Go Back Full Screen Close

Interval-Valued: 3rd Aux. Result (cont-d) 61.

- Similarly,
 - if A is a basic 2-element set, with $A(x_0) = [0,1]$, $\underline{A}(x_1) = 0$, and $\overline{A}(x_1) < 1$,
 - then we can have the following proper superset $B \supseteq$ A which is also a basic 2-element set:
 - \bullet $B(x_0) = [0, 1];$
 - $B(x_1) = \left[0, \frac{1 + \overline{A}(x_1)}{2}\right]$; and
 - \bullet B(x) = 0 for all other x.
- The proposition is proven.

>>

Full Screen

Close

62. Interval-Valued: 5th Auxiliary Result

- Definition.
 - Let A be a basic 2-element set, with:
 - \bullet $A(x_0) = [0, 1],$
 - $A(x_1) = [0, a]$ for some $a \in (0, 1)$, and
 - A(x) = [0,0] for all other x.
 - Then, by its type-1 cover, we mean a normalized interval-valued fuzzy set A' for which:
 - $A'(x_0) = [1, 1],$
 - $A'(x_1) = [a, a], and$
 - A'(x) = [0, 0] for all other x.
- Let us show that the type-1 cover can be determined in terms of the subsethood relation.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 63 of 83 Go Back Full Screen Close Quit

Introduction

- Proposition. Let A be a basic 2-element set. Then:
 - its type-1 cover A' is the \subseteq -smallest normalized interval-valued fuzzy set
 - that contains all the normalized interval-valued sets $B \supseteq A$ for which the following conditions hold:
 - the set B is not a basic 2-element set;
 - the class of all basic 2-element subsets of B is linearly ordered;
 - the class $\{C: C \text{ is normalized } \& A \subseteq C \subseteq B\}$ is linearly ordered; and
 - the set B has only one uncertain 1-element subset.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 64 of 83 Go Back Full Screen Close Quit

Introduction

- Let us first prove that B satisfies the above four conditions \Leftrightarrow it has one the following 2 forms:
 - either it has the form $B(x_0) = [b, 1]$ for some b > 0, $B(x_1) = A(x_1)$, and B(x) = [0, 0] for all other x;
 - we will call these B of the first form;
 - or it has the form $B(x_0) = A(x_0)$, $B(x_1) = [b, a]$ for some b > 0, and B(x) = [0, 0] for all other x;
 - we will call these B of the second form.
- Let us first prove that the all the sets B of the first form satisfy all the above four conditions.
- \bullet Indeed, clearly, such B is not a basic 2-element set.

- If C is a basic 2-element set for which $C \subseteq B$, then we have:
 - $C(x_0) = [0, 1],$
 - C(x) = [0, 0] for all x different from x_0 and x_1 , and
 - $C(x_1) = [0, c]$ for some $c \le a$.
- Clearly, the set of all such C is linearly ordered.
- Indeed, if we have two such sets, corresponding to elements c_1 and c_2 , then:
 - if $c_1 \leq c_2$, then we have $C_1 \subseteq C_2$, and
 - if $c_2 \leq c_1$, then we have $C_2 \subseteq C_1$.

Introduction Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 66 of 83

Go Back

Full Screen

Close

- $C(x_0) = [c, 1]$ for some $c \in [b, 1]$,
- $C(x_1) = A(x_1)$, and
- \bullet C(x) = [0,0] for all other x.
- Thus, if we have two such sets, corresponding to elements c_1 and c_2 , then:
 - if $c_1 < c_2$, then we have $C_1 \subseteq C_2$, and
 - if $c_2 \leq c_1$, then we have $C_2 \subseteq C_1$.
- Of course, the only uncertain 1-element set contained in B is the set corresponding to x_0 .
- All four conditions are proven.
- Let us now prove that the all the sets B of the second form satisfy all the above four conditions.

Second Auxiliary Result

Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Second Conclusion Possible Future Work

Home Page

Title Page

>>

Page 67 of 83

Go Back

Full Screen

Close

- \bullet Indeed, clearly, such B is not a basic 2-element set.
- If $C \subseteq B$ is a basic 2-element set, then we have:
 - $C(x_0) = [0, 1],$
 - C(x) = [0, 0] for all x different from x_0 and x_1 , and
 - $C(x_1) = [0, c]$ for some $c \le a$.
- Clearly, the set of all such C is linearly ordered.
- Indeed, if we have two such sets, corresponding to elements c_1 and c_2 , then:
 - if $c_1 \leq c_2$, then we have $C_1 \subseteq C_2$, and
 - if $c_2 \leq c_1$, then we have $C_2 \subseteq C_1$.

Results Second Auxiliary Result Third Auxiliary Result Main Result Interval-Valued Case First Conclusion Second Conclusion Possible Future Work Home Page Title Page **>>** Page 68 of 83 Go Back Full Screen Close Quit

Introduction

- If $A \subseteq C \subseteq B$, then we have:
 - $\bullet \ C(x_0) = A(x_0),$
 - $C(x_1) = [c, a]$ for some $c \in [b, a]$, and
 - C(x) = [0, 0] for all other x.
 - Thus, if we have two such sets, corresponding to elements c_1 and c_2 , then:
 - if $c_1 \leq c_2$, then we have $C_1 \subseteq C_2$, and
 - if $c_2 \leq c_1$, then we have $C_2 \subseteq C_1$.
 - Of course, the only uncertain 1-element set contained in B is the set corresponding to x_0 .
 - All four conditions are proven.
 - Let us now prove that if B satisfies the above conditions, then B is of the first or of the second form.

Second Auxiliary Result

Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case
First Conclusion

Second Conclusion

Possible Future Work

Home Page
Title Page

← →

Page 69 of 83

Go Back

Full Screen

Close

- Let us first prove that we must have B(x) = [0, 0] for all elements x which are different from x_0 and x_1 .
- We will prove this by contradiction.
- Assume that $\overline{B}(x_2) > 0$ for some element x_2 which is different from x_0 and x_1 .
- Then, in addition to a basic 2-element set $A \subseteq B$, we also have another basic 2-element set $C \subseteq B$ for which:
 - $C(x_0) = [0, 1],$
 - $C(x_2) = [0, \overline{B}(x_2)]$, and
 - C(c) = [0, 0] for all other elements x.
- Then:
 - $\overline{A}(x_1) = a > 0 = \overline{C}(x_1)$, so $A \not\subseteq C$; and
 - $\overline{C}(x_2) > 0 = \overline{A}(x_2)$, so we cannot have $C \not\subseteq A$.

Introduction

Results

Second Auxiliary Result
Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

← →

4

Page 70 of 83

Go Back

Full Screen

Close

- This contradicts to the condition that set of all basic 2element sets which are subsets of B is linearly ordered.
- Thus, $\overline{B}(x) > 0$ is impossible.
- So, indeed, B(x) = [0,0] for all elements x which are different from x_0 and x_1 .
- Thus, the set B is uniquely described by its values $B(x_0)$ and $B(x_1)$.
- The condition that $A \subseteq B$ implies that $\overline{A}(x_0) = 1$ and that:
 - $\bullet \ \overline{B}(x_0) \ge 0,$
 - $\underline{B}(x_1) \geq 0$, and
 - that $\overline{B}(x_1) \ge a = \overline{A}(x_1)$.
- Since B is not a basic 2-element set and A is such a set, we have $B \neq A$.

.

Second Auxiliary Result
Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion
Second Conclusion

Possible Future Work

Home Page
Title Page

Page 71 of 83

Go Back

Full Screen

Close

- Thus, at least one of the above inequalities must be strict.
- Let us consider these three inequalities one by one.
- Let us first consider the case when $\overline{B}(x_0) > 0$.
- Let us prove that in this case, we have $B(x_1) = A(x_1)$, i.e., that we have a set of the first form.
- We will first prove, by contradiction, that $\underline{B}(x_1) = 0$.
- Indeed, if $\underline{B}(x_1) > 0$, then we can form C_1, C_2 for which $A \subseteq C_1 \subseteq B$, $A \subseteq C_2 \subseteq B$, $C_1 \not\subseteq C_2$, and $C_2 \not\subseteq C_1$:
 - $C_1(x_0) = A(x_0) = [0,1], C_1(x_1) = B(x_1), \text{ and } C_1(x) = [0,0] \text{ for all other } x;$
 - $C_2(x_0) = B(x_0), C_2(x_1) = A(x_1), \text{ and } C_2(x) = [0, 0]$ for all other x.

Introduction

Results

Second Auxiliary Result

Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 72 of 83

Go Back

Full Screen

Close

- $C_1(x_1) = B(x_1) > 0 = C_2(x_1)$, so $C_1 \not\subseteq C_2$;
- $C_2(x_0) = B(x_0) > 0 = C_1(x_0)$, so $C_2 \not\subset C_1$.
- This contradicts to our assumption that the class of all intermediate fuzzy sets C is linearly ordered.
- Thus, we must have $\underline{B}(x_1) = 0$.
- Let us now prove, by contradiction, that $\overline{B}(x_1) = \overline{A}(x_1)$.
- Indeed, suppose that $\overline{B}(x_1) > \overline{A}(x_1)$.
- Then we can form C_1, C_2 for which $A \subseteq C_1 \subseteq B$, $A \subseteq$ $C_2 \subseteq B$, $C_1 \not\subseteq C_2$, and $C_2 \not\subseteq C_1$:
 - $\bullet C_1(x_0) = A(x_0) = [0,1], C_1(x_1) = B(x_1), \text{ and }$ $C_1(x) = [0,0]$ for all other x;
 - $C_2(x_0) = B(x_0), C_2(x_1) = A(x_1), \text{ and } C_2(x) = [0, 0]$ for all other x.

Second Auxiliary Result Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page **>>**

Page 73 of 83

Go Back

Full Screen

Close

- Here:
 - $\overline{C}_1(x_1) = \overline{B}(x_1) > \overline{A}(x_1) = \overline{C}_2(x_1)$, so $C_1 \not\subseteq C_2$;
 - $\underline{C}_2(x_0) = \underline{B}(x_0) > 0 = \underline{C}_1(x_0)$, so $C_2 \not\subseteq C_1$.
 - ullet This contradicts to our assumption that the class of all intermediate fuzzy sets C is linearly ordered.
 - Thus, we must have $\overline{B}(x_1) = \overline{A}(x_1)$.
 - So, in this case, we indeed have a set of the first form.
 - Let us now consider the case when $\underline{B}(x_1) > 0$.
 - Let us prove that in this case, we have $\overline{B}(x_0) = 0$ and $\overline{B}(x_1) = \overline{A}(x_1)$.
 - This would mean that we have a set of the second form.
 - We will first prove, by contradiction, that $\underline{B}(x_0) = 0$.

Introduction

Results

Second Auxiliary Result

Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 74 of 83

Go Back

Full Screen

Close

- Indeed, if $\underline{B}(x_0) > 0$, then we can form C_1, C_2 for which $A \subseteq C_1 \subseteq B$, $A \subseteq C_2 \subseteq B$, $C_1 \not\subseteq C_2$, and $C_2 \not\subseteq C_1$:
 - $C_1(x_0) = A(x_0) = [0,1], C_1(x_1) = B(x_1), \text{ and } C_1(x) = [0,0] \text{ for all other } x;$
 - $C_2(x_0) = B(x_0), C_2(x_1) = A(x_1), \text{ and } C_2(x) = [0, 0]$ for all other x.
- Here:
 - $\underline{C}_1(x_1) = \underline{B}(x_1) > 0 = \underline{C}_2(x_1)$, so $C_1 \not\subseteq C_2$;
 - $\underline{C}_2(x_0) = \underline{B}(x_0) > 0 = \underline{C}_1(x_0)$, so $C_2 \not\subseteq C_1$.
- This contradicts to our assumption that the class of all intermediate fuzzy sets C is linearly ordered.
- Thus, we must have $\underline{B}(x_0) = 0$.
- Let us now prove, by contradiction, that $\overline{B}(x_1) = \overline{A}(x_1)$.

Results

Introduction

Second Auxiliary Result

Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 75 of 83

Go Back

Full Scroon

Full Screen

Close

Results

Third Auxiliary Result

• In

75.

- Indeed, suppose that $\overline{B}(x_1) > \overline{A}(x_1)$.
- Then we can form C_1, C_2 for which $A \subseteq C_1 \subseteq B$, $A \subseteq C_2 \subseteq B$, $C_1 \not\subseteq C_2$, and $C_2 \not\subseteq C_1$:
 - $C_1(x_0) = [0, 1], C_1(x_1) = B(x_1), \text{ and } C_1(x) = [0, 0]$ for all other x;
 - $C_2(x_0) = B(x_0), C_2(x_1) = A(x_1), \text{ and } C_2(x) = [0, 0]$ for all other x.
- Here:
 - $\overline{C}_1(x_1) = \overline{B}(x_1) > \overline{A}(x_1) = \overline{C}_2(x_1)$, so $C_1 \not\subseteq C_2$;
 - $\underline{C}_2(x_0) = \underline{B}(x_0) > 0 = \underline{C}_1(x_0)$, so $C_2 \not\subseteq C_1$.
- ullet This contradicts to our assumption that the class of all intermediate fuzzy sets C is linearly ordered.
- Thus, we must have $\overline{B}(x_1) = \overline{A}(x_1)$.

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Title Page

Home Page

4)

Page 76 of 83

Go Back

Full Screen

Close

Close

- So, in this case, we indeed have a set of the second form.
- Finally, let us prove that the case when $\overline{B}(x_1) > \overline{A}(x_1)$ is not possible.
- We will first prove, by contradiction, that in this case, $\underline{B}(x_0) = 0$.
- Indeed, if $\underline{B}(x_0) > 0$, then we can form C_1, C_2 for which $A \subseteq C_1 \subseteq B$, $A \subseteq C_2 \subseteq B$, $C_1 \not\subseteq C_2$, and $C_2 \not\subseteq C_1$:
 - $C_1(x_0) = A(x_0) = [0,1], C_1(x_1) = B(x_1), \text{ and } C_1(x) = [0,0] \text{ for all other } x;$
 - $C_2(x_0) = B(x_0), C_2(x_1) = A(x_1), \text{ and } C_2(x) = [0, 0]$ for all other x.

Second Auxiliary Result
Third Auxiliary Result
Main Result

Interval-Valued Case

First Conclusion

Introduction

Results

Second Conclusion

Possible Future Work

Home Page

Title Page

>>

Page 77 of 83

Go Back

Full Screen

Close

- Here:
 - $\bullet \ \overline{C}_1(x_1) = \overline{B}(x_1) > \overline{A}(x_1) = \overline{C}_2(x_1)$, so $C_1 \not\subset C_2$;
 - $C_2(x_0) = B(x_0) > 0 = C_1(x_0)$, so $C_2 \not\subset C_1$.
- This contradicts to our assumption that the class of all intermediate fuzzy sets C is linearly ordered.
- Thus, we must have $B(x_0) = 0$.
- Let us now prove, by contradiction, that $B(x_1) = 0$.
- Indeed, suppose that $B(x_1) > 0$.
- Then we can form C_1, C_2 for which $A \subseteq C_1 \subseteq B$, $A \subseteq$ $C_2 \subseteq B$, $C_1 \not\subseteq C_2$, and $C_2 \not\subseteq C_1$:
 - $C_1(x_0) = A(x_0) = [0,1], C_1(x_1) = [0,\overline{B}(x_1)], \text{ and }$ $C_1(x) = [0,0]$ for all other x;
 - $C_2(x_0) = A(x_0) = [0, 1], C_2(x_1) = [\underline{B}(x_1), \overline{A}(x_1)],$ and $C_2(x) = [0, 0]$ for all other x.

Second Auxiliary Result

Third Auxiliary Result

Main Result

Introduction

Results

Interval-Valued Case

First Conclusion

Second Conclusion Possible Future Work

> Home Page Title Page

>>

Page 78 of 83

Go Back

Full Screen

Close

- Here:
 - $\overline{C}_1(x_1) = \overline{B}(x_1) > \overline{A}(x_1) = \overline{C}_2(x_1)$, so $C_1 \not\subseteq C_2$;
 - $\underline{C}_2(x_1) = \underline{B}(x_1) > 0 = \underline{C}_1(x_1)$, so $C_2 \not\subseteq C_1$.
- This contradicts to our assumption that the class of all intermediate fuzzy sets C is linearly ordered.
- Thus, we must have $\underline{B}(x_1) = 0$.
- Finally, $\overline{B}(x_1) < 1$, since otherwise B would have two uncertain 1-element subsets:
 - a subset corresponding to x_0 , and
 - a subset corresponding to x_1 ,
- We know that $B(x_0) = 1$ and we have proved that $\underline{B}(x_0) = \underline{B}(x_1) = 0$ and $\overline{B}(x_1) < 1$.
- \bullet So, we conclude that the set B is a basic 2-element set, but we explicitly assumed that it is not.

Results

Resuits

Introduction

Second Auxiliary Result
Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 79 of 83

Go Back

Full Screen

Cla

Close

- \bullet Thus, the third inequality cannot be strict, so B is indeed either of the first form, or of the second form.
- One can check that the smallest set containing all such sets is indeed the set A'.
- The proposition is proven.

- Definition.
 - Let A be an uncertain 1-element set, with $A(x_0) = [0,1]$, and A(x) = [0,0] for all other x.
 - ullet Then, by its type-1 cover, we mean a crisp set

$$A' = \{x_0\}.$$

- Proposition. A normalized interval-valued fuzzy set is a type-1 set \Leftrightarrow the following conditions hold:
 - if $B \subseteq A$ for some uncertain 1-element set, then $B' \subset A$, and
 - if $B \subseteq A$ for some basic 2-element set, then

$$B' \subseteq A$$
.

• One can see that the type-1 cover of a set $A(x) = [\underline{A}(x), \overline{A}(x)]$ has the form $A'(x) = [\overline{A}(x), \overline{A}(x)]$.

Introduction

Results

Second Auxiliary Result

Main Result

Interval-Valued Case

Third Auxiliary Result

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 81 of 83

Go Back

Full Screen

Close

- Vice versa, let us prove that if the above two conditions are satisfied, then A is a type-1 set.
- In other words, let's prove that $\underline{A}(x) = \overline{A}(x)$ for all x.
- To prove this, let us consider two possible cases:
 - elements x for which $\overline{A}(x) = 1$, and
 - elements x for which $\overline{A}(x) < 1$.
- \bullet Let us first consider an element x for which

$$\overline{A}(x) = 1.$$

- In this case, $B \subseteq A$ for the uncertain 1-element set B for which B(x) = [0, 1] and B(y) = [0, 0] for all $y \neq x$.
- Then, $B' = \{x\}$, i.e., B'(x) = [1, 1].

Introduction

Results

Second Auxiliary Result

Third Auxiliary Result

Main Result

Interval-Valued Case

First Conclusion

Second Conclusion

Possible Future Work

Home Page

Title Page

Page 82 of 83

Go Back

Full Screen

Close

Ciose

82. Interval-Valued: Main Result (cont-d)

- Thus, from $B' \subseteq A$ it follows that $1 = \underline{B}'(x) \leq \underline{A}(x)$, so $\underline{A}(x) = 1 = \overline{A}(x)$.
- So, for such elements x, we indeed have $\underline{A}(x) = \overline{A}(x)$.
- Finally, let's consider an element x for which $\overline{A}(x) < 1$.
- Since A is normalized, there exists an element x_0 for which $\overline{A}(x_0) = 1$.
- Now, we can form the following basic 2-element set B: $B(x_0) = [0, 1], B(x) = [0, \overline{A}(x)], \text{ and } B(y) = [0, 0] \text{ for all other elements } y.$
- Clearly, $B \subseteq A$, hence $B' \subseteq A$.
- Here, $B'(x) = [\overline{B}(x), \overline{B}(x)] = [\overline{A}(x), \overline{A}(x)].$
- So, $B' \subseteq A$ implies $\underline{B}'(x) = \overline{A}(x) \le \underline{A}(x)$, thus $\underline{A}(x) = \overline{A}(x)$. QED

Introduction
Results
Second Auxiliary Result
Third Auxiliary Result
Main Result
Interval-Valued Case
First Conclusion
Second Conclusion

Possible Future Work

Home Page

Title Page

Page 83 of 83

Go Back

Full Screen

Close