Optimal Control on a Discrete Time Influenza Model

October 15, 2010

Paula A. González-Parra

Program in Computational Science, The University of Texas at El Paso El Paso, TX 79968-0514, USA

Sunmi Lee

Mathematical, Computational and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA

LETICIA VELAZQUEZ

Program in Computational Science,
Department of Mathematical Science,
The University of Texas at El Paso El Paso, TX 79968-0514, USA

CARLOS CASTILLO-CHAVEZ

Mathematical, Computational and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA

Abstract

A discrete time Susceptible - Asymptomatic - Infectious - Treated - Recovered (SAITR) model is introduced in the context of influenza transmission. We evaluate the potential effect of control measures such as social distancing and antiviral treatment on the dynamics of a single outbreak. Optimal control theory is applied to identify the best way of reducing morbidity and mortality at a minimal cost. The problem is solved by using a discrete version of Pontryagin's maximum principle. Numerical results show that dual strategies have stronger impact in the reduction of the final epidemic size.