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EPR paradox: brief reminder. Traditionally, a state of a quantum system
is described by a complex-valued wave function. For two independent particles
in states ψi(xi), the joint state is a product ψ1(x1) ·ψ2(x2). When particles are
not independent (= entangled), we can have a more complex joint state, such

as the state
1√
2
· (|0102⟩+ |1112⟩) used in quantum computing.

When we measure the state of Particle 1, then, according to quantum
physics, the joint state changed into either into |0102⟩ or into |1112⟩. Thus,
the state of the second particle – as described by the wave function – immedi-
ately changed too. When the particles are separated, this action-at-a-distance
seems to contradict special relativity, according to which all speeds are limited
by the speed of light c; this is the essence of the EPR paradox.

Bohr’s explanation. Niels Bohr explained that while the wave function indeed
changes immediately, this process cannot be used for faster-than-light commu-
nication: the results of measurements performed on Particle 2 does not change
when we perform the measurements on Particle 1.

Towards a more adequate description of a quantum state. The EPR
paradox shows that wave function, while convenient for computations and pre-
dictions, is not always the most physically adequate description of a quantum
state. To get a more adequate description, we can take a spatial region U and
consider only measurements that depend on what is inside U . For example,
for a single particle, these measurements only depend on the values ψ(x) for
x ∈ U . One can show that in general, to describe the probabilities of differ-
ent measurement results, it is sufficient to describe the corresponding density
matrix ρ(U).

When we limit ourselves to a subregion U ′ ⊂ U , then ρ(U ′) is equal to a
naturally defined projection of ρ(U): ρ(U ′) = πU→U ′(ρ(U)). In mathematical
terms, matrices ρ(U) form a sheaf – which is thus a more physically adequate
representation of the quantum state than the wave function.


