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Formulation of the problem. One of the most successful ways to trans-
form natural-language expert knowledge into computer-understandable numeri-
cal form is to use fuzzy logic. In fuzzy logic, each imprecise property like “small”
is described by a membership function that assigns, to each possible value x, a
degree µ(x) to which x is, e.g., small. The problem is that membership func-
tions are subjective. It is therefore desirable to look for cases when the results
do not depend on this subjective choice.

Continuity: known example. Intuitively, continuity means that if x′ is close
to x, then y′ = f(x′) should be close to y = f(x). In other words, if x′ − x is
small, then f(x′)− f(x) should be small. Thus, the degree µy

small(f(x
′)− f(x))

cannot be smaller that µx
small(x

′ − x). The quantities x and y may differ by
scale, so µy

small(z) = µx
small(K ·z), thus µx

small(K · (f(x′)−f(x)) ≥ µx
small(x

′−x),
hence K · |f(x′)− f(x)| ≤ |x−x′| and |f(x′)− f(x)| ≤ K−1 · |x′ −x|. Thus, the
common sense continuity leads to the Lipschitz condition.

New examples. What if we have a relation between x and y and not a func-
tion? In this case, continuity still implies that f(x) is a function.

What is the dependence of y on x and x on y are both continuous? Then,
we have |f(x′)− f(x)| ≤ K−1 · |x′ − x| and |x′ − x| ≤ K · |f(x′)− f(x)|, hence
|f(x′)− f(x)| = K−1 · |x′ − x| for all x and x′. One can prove that this is only
possible when f(x) is linear.

What if f(x) is growing? Intuitively, it means that if x′ ≫ x, then f(x′) ≫
f(x). For any membership function for “much larger”, we get f(x′) − f(x) ≥
K · (x′ − x) for x′ > x, i.e., in effect, f ′(x) ≥ K for some K > 0.


