Fourier Transform and Other Quadratic Problems under Interval Uncertainty

Oscar Galindo\(^1\), Christopher Ibarra\(^1\), Vladik Kreinovich\(^1\), and Michael Beer\(^2\)

\(^1\)Department of Computer Science
University of Texas at El Paso
500 W. University, El Paso, Texas 79968, USA
\{ogalindomo,caibarra5\}@miners.utep.edu, vladik@utep.edu

\(^2\)Institute for Risk and Reliability, Leibniz University Hannover
30167 Hannover, Germany, beer@irz.uni-hannover.de

Need for data processing. Computers are used to estimate the current values of physical quantities and to predict their future values – e.g., to predict tomorrow’s temperature.

Need to take uncertainty into account. The inputs \(x_1, \ldots, x_n\) for such data processing come from measurements (or from expert estimates). Both measurements and expert estimates are not absolutely accurate: measurement results \(\tilde{x}_i\) are, in general, somewhat different from the actual (unknown) values \(x_i\) of the corresponding quantities. Because of these differences \(\tilde{x}_i - x_i\) (called measurement errors), the result \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)\) of data processing is also somewhat different from the actual value of the desired quantity \(y\) — at least from the value \(y = f(x_1, \ldots, x_n)\) that we would have obtained if we knew the exact values \(x_i\) of the inputs.

Need for interval uncertainty. In many practical situations, the only information that we have about measurement uncertainty is the upper bound \(\Delta_i\) on the absolute value of each measurement error. In such situations, if the measurement result is \(\tilde{x}_i\), then all we know about the actual value \(x_i\) of the corresponding quantity is that this value is in the interval \([\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]\).

Under such interval uncertainty, it is desirable to know the range of possible value of \(y\).

Interval uncertainty: what is known. In general, computing such a range is NP-hard already for quadratic functions \(f(x_1, \ldots, x_n)\). Recently, a feasible algorithm was proposed for a practically important quadratic problem — of estimating the absolute value (modulus) of Fourier coefficients.

What we do. In this talk, we show that this feasible algorithm can be extended to a reasonable general class of quadratic problems.