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LLMs are one of the tools for predicting future. One of the main goals of science is to predict future
events: we know the situations s1, . . . , st at several previous moments of time, and we want to predict the
situation st+1 that will happen in the next moment of time. In particular, recently, one of the tools that is
currently used for such prediction is Large Language Models (LLMs).

How can we compare the quality of different predictors? We want to design the most accurate
predictor. Thus, we need to be abkle to compare the quality of different predictors. Several natural char-
acteristics can be used to describe this quality. For example, for each i, we can compute the probability

pi
def
= p(si|s1, . . . , si−1) that the predictor correctly predicts the state si at moment i based on the previous

states s1, . . . , si−1.
For each i, the larger the probability pi, the better. But what if, for two predictors, we have p1 > p′1

but p2 < p′2? Which predictor should we select? To be able to always compare the quality of different
predictors, we need to combine all these values p1, . . . , pn into a single number p = fn(p1, . . . , pn) – so that
the predictor with the larger combined probability is better. Which combination operation fn(p1, . . . , pn)
should we choose?

Empirical fact and the corresponding challenge. It has been shown that among all proposed functions,
the most adequate comparison occurs when we select fn(p1, . . . , pn) = n

√
p1 · . . . · pn. But is this function

indeed the best – or is it simply the best of all the functions that have been tried, and a yet untried function
will work better?

What we do in this talk. We show that the empirically successful function is the only one that satisfies
natural requirements. This explains why this function is empirically successful – and confirms that no other
yet untried function will be better.

First natural requirement. Time is continuous. Our selection of the moments of time is arbitrary.
Instead of the original time units – e.g., days, we could use weeks or months, etc. A natural requirement
is that our measure of quality should not change if we simply choose a different unit: fn(p1, . . . , pn) =
fn/k(p1 · . . . pk, pk+1 · . . . · p2k, . . .).

Second natural requirement. If all the probabilities pi are the same, i.e., if p1 = . . . = pn = p, then it is
reasonable to use this common probability p as the measure of the predictor’s quality.


