
How to take negative information into account?

Samuel Arzola1, Darien Booth1, Steve Cruz1, Miguel Lucero2,
Anaiah Quinn1, Ana Rodriguez1, Olga Kosheleva2, and Vladik Kreinovich1

Departments of 1Computer Science and 2Teacher Education
University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA

searzola@miners.utep.edu, djbooth@miners.utep.edu, sacruz7@miners.utep.edu,
malucero3@miners.utep.edu, aequinn@miners.utep.edu, amrodriguez28@miners.utep.edu,

olgak@utep.edu, vladik@utep.edu

Formulation of the problem. In many practical situations, we rely on expert estimates. When several
experts provide estimates x1, . . . , xn for the quantity of interest, then a natural idea is to use the arithmetic
mean x = (x1 + . . .+ xn)/n in our decision making. But what if some experts provide negative information
– e.g., saying that the actual value is not close to some value yj? How can we take this information into
account? In this talk, we use decision theory approach to answer this question.

What if there is no negative information. To deal with the problem, let us first consider the case when
there is no negative information, i.e., when all experts submit some estimates xi. According to decision
theory, we should select an alternative with the largest value of expected utility. For our situation, this
means that we select the value x that maximized the expression p1 · u1(x) + . . .+ pn · un(x), where pi is the
probability that the i-th expert is correct, and ui(x) is the utility according to this expert. In situations
when we have no reason to assume that some experts are more skilled than others, it is reasonable to consider
them equally probable to be correct, i.e., p1 = . . . = pn.

What is ui(x)? The fact that the i-th expert provides an estimate xi means that, according to this
expert, the utility attains its maximum when x = xi. Since they are experts, their estimates xi are close to
the actual value a, so the difference xi − a is small. In this case, we can safely ignore higher order terms in
the Taylor expansion of ui(x) and only keep the first few terms. It is not possible to only keep linear terms,
since a linear function does not have a maximum. So, we need to also take quadratic terms into account,
so ui(x) = a0 + a1 · x + a2 · x2. Since the function ui(x) attains its maximum for x = xi, this means that
ui(x) = Ai−Bi · (x−xi)

2 for some Ai and Bi > 0. Again, since there is no reason to assume that the values
Ai and Bi are different, it makes sense to assume that they are the same for all experts, i.e., that Ai = A
and Bi = B for some A and B. In this case, the expected utility takes the form A − (B/n) ·

∑
(x − xi)

2,
so maximizing it is equivalent to minimizing the sum of the squares

∑
(x− xi)

2. And it is well known that
minimizing this expression leads to the arithmetic mean.

What if in addition n positive experts, m experts provide negative information? The opinion
that the actual value is not close to yj means that the corresponding utility function attains its smallest
value when x = yj . In this case, a similar argument leads to the expression uj(x) = Cj +Dj · (x− yj)

2 for
some Cj and Dj > 0. It still makes sense to assume that the values Cj and Dj are the same for all negative
experts: Cj = C and Dj = D for some C and D.

Thus, the expected utility takes the form const−(B/(n+m))·
∑

(x−xi)
2+(D/(n+m))·

∑
(x−yj)

2. If we
subtract the constant and divide the maximized function by B/(n+m), we conclude that maximizing utility is
equivalent to minimizing the sum

∑
(x−xi)

2−k ·
∑

(x−yj)
2, where k = D/B. Differentiating this expression

with respect to x and equating the derivative to 0, we get: x = (1/(n−k·m))·(x1+. . .+xn−k·(y1+. . .+ym)).


