

How to explain empirically successful structural similarity index

Gerson Cruz¹, Olga Kosheleva², and Vladik Kreinovich¹

Departments of ¹Computer Science and ²Teacher Education

University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA

gcruz10@miners.utep.edu, olgak@utep.edu, vladik@utep.edu

Formulation of the problem. How can you gauge perception-based similarity of two images – or segments of images – x and y ? It turns out that we can get a good description of this similarity based on the first two moments of the joint distribution: the means μ_x and μ_y , the standard deviations σ_x and σ_y , and the covariance σ_{xy} . Specifically, we need to use a combination of the following three characteristics: $\frac{2\mu_x\mu_y + c_1}{\mu_x^2 + \mu_y^2 + c_1}$, $\frac{2\sigma_x\sigma_y + c_2}{\sigma_x^2 + \sigma_y^2 + c_2}$, and $\frac{\sigma_{xy} + c_3}{\sigma_x\sigma_y + c_3}$. Why these three and not other possible characteristics?

Explanation of the third characteristic. Let us start by explaining why, based on σ_{xy} , σ_x , and σ_y , we get the third characteristic. We are looking for a characteristic $F(\sigma_{xy}, \sigma_x, \sigma_y)$ that would not change if we change the lighting of the images – which is equivalent to multiplying each image by the corresponding constant c_x or c_y . Under such change, σ_x changes to $c_x \cdot \sigma_x$, σ_y to $c_y \cdot \sigma_y$, and σ_{xy} to $c_x \cdot c_y \cdot \sigma_{xy}$. In these terms, invariance means $F(\sigma_{xy}, \sigma_x, \sigma_y) = F(c_x \cdot c_y \cdot \sigma_{xy}, c_x \cdot \sigma_x, c_y \cdot \sigma_y)$. In particular, for $c_x = 1/\sigma_x$ and $c_y = 1/\sigma_y$, we conclude that $F(\sigma_{xy}, \sigma_x, \sigma_y) = f(\sigma_{xy}/(\sigma_x \cdot \sigma_y))$, where we denoted $f(x) \stackrel{\text{def}}{=} F(x, 1, 1)$.

The simplest case to compute is to simply take $f(x) = x$. In this case, for identical images, we get 1. There is one problem: two almost blank pages, for which $\sigma_x = \sigma_y \approx 0$, should be very similar, with the ratio equal to 1, but the expression $\sigma_{xy}/(\sigma_x \cdot \sigma_y)$ is not continuous around $\sigma_x = 0$, so for small σ_x and σ_y we can get many different value instead of the desired 1. The computationally simplest way to make it continuous is to add a constant to the denominator: this way we only add 1 addition – of this constant – to the algorithm. We also want the characteristic to be equal to 1 when the images are identical. This is true for the original ratio $\sigma_{xy}/(\sigma_x \cdot \sigma_y)$, but not true if we add a constant to the denominator. To make it 1 again, the computationally simplest way is to add the same constant to the numerator. Thus, we get the third characteristic.

Explanation of the first characteristic. What characteristic $G(\mu_x, \mu_y)$ can we construct based on the means? We cannot make it fully scale-invariant – as in the above explanation – since, as one can show, the only scale-invariant characteristic is the identical constant. However, we can make it invariant with respect to similar change to both images, when we replace μ_x and μ_y with $c \cdot \mu_x$ and $c \cdot \mu_y$. This implies that we cannot avoid division, so we can have a characteristic $P(\mu_x, \mu_y)/Q(\mu_x, \mu_y)$. We want this characteristic to be 1 if and only if $\mu_x = \mu_y$ and smaller than 1 in all other cases. One can show that this excludes the case of computationally simplest case of linear P and Q , so P and Q should be at least quadratic – and the simplest are quadratic. Due to symmetry between x and y and scale-invariance, we should have $P(a, b) = k_1 \cdot a \cdot b + k_2 \cdot (a^2 + b^2)$ and similarly $Q(a, b) = \ell_1 \cdot a \cdot b + \ell_2 \cdot (a^2 + b^2)$.

There should be zero similarity between empty $x = 0$ and a non-empty image $y \neq 0$, so $k_2 = 0$. We can now divide both numerator and denominator by $k_1/2$ and get $P(a, b) = 2ab$.

For polarized images, for which negative amplitude makes sense, it is reasonable to require that for x and $-x$, we should have -1 – thus $\ell_1 = 0$. The condition that for $x = y$ we should have 1 leads to $\ell_2 = 1$, so we get $2\mu_x \cdot \mu_y / (\mu_x^2 + \mu_y^2)$. Similarly to the previous case, this expression is not continuous for $\mu_x = \mu_y = 0$. To make it continuous, the computationally simplest way is to add a constant to the denominator – and then add the same constant to the numerator to make sure that the characteristic is 1 when $x = y$.