Automata
Homeworks for the
course CS 3350, Spring 2023
General comment. The main purpose of most homeworks is to
show how well you understand the algorithms.
In many cases, the resulting finite automata, pushdown automata,
and Turing machines can be simplified, but please first
literally apply the algorithm so that we know that you can use
it.
If in addition to this, you also show how to make the
corresponding Turing machine or finite automaton or whatever more
concise, nothing wrong with that, the TA may even give you some
extra points (if she has time to grade these additional things).
But the most important thing is to show that you can follow the
algorithm.
For simple examples that we give you as homeworks:
- you
may immediately see how to convert, e.g., a context-free grammar
into a Chomsky normal form,
- but if someone gives you a more
complex case, you will have to use the algorithm.
So, it is
important to learn how to follow the algorithm.
If you deviate from the algorithm, how do we know that you learned
the algorithms? It was the same with sorting.
- Of course,
if someone gives you a list of 4 numbers on the test, you can sort
them yourself easily.
- The purpose of the question was that you
show that you understand mergesort, quicksort etc., not that
you sort 4 numbers.
In general: - If after you
show that you understand the algorithm you also provide a simpler
answer -- great,
- but not instead of following the
algorithm.
1. (Due January 25) In class, we designed automata for
recognizing integers and real numbers.
1.1. Use the same ideas to describe an automaton for recognizing
good passwords. A good password should contain at least one letter and at least one
digit.
A natural idea is to have 4 states: start (s), has letters but not
digits (l), has digits but no letters (d), and has both (p). Start
is the starting state, p is the only final state. The transitions
are as follows:
- from s, any letter a, ..., z leads to l,
every digit 0, ..., 9 leads to d;
- from l, any letter leads
back to l, every digit leads to p;
- from d, any digit leads
back to d, every letter leads to p;
- from p, every symbol leads
back to p.
1.2. Trace, step-by-step, how the finite automaton from Part 1.1
will check whether the following two words (sequences of symbols)
are good passwords:
- the word a12 (which this automaton
should accept) and
- the word 123 (which this automaton should
reject).
1.3. Write down the tuple <Q, Σ, δ, q0,
F> corresponding to the automaton from Part 1.1:
- Q is
the set of all the states,
- Σ is the alphabet, i.e., the
set of all the symbols that this automaton can encounter; for
simplicity, consider only three symbols: 0, 1, and letter a;
- δ: Q x Σ → Q is the function that describes,
for each state q and for each symbol s, the state δ(q,s) to
which the automaton that was originally in the state q moves when
it sees the symbol s (you do not need to describe all possible
transitions this way, just describe two of them);
-
q0 is the starting state, and
- F is the set of all
final states.
1.4. Apply the general algorithm for union and intersection of two
automata A and B to:
- the automaton from
Part 1.1 as Automaton A, and
- an automaton for
recognizing Java names for variables as Automaton B.
In
Java, a name of the variable should start with a letter, all
other symbols can be letters or digits. A natural idea is to have 3 states: start
(s), correct name (c), and error (e). Start is the starting
state, c is the only final state. The transitions are as follows:
- from s, any letter lead to c, any digit
leads to e;
- from c, any symbol leads back to c;
- from e, every symbol leads back to e.
For simplicity,
in your automaton for recognizing the union and intersection of the
two languages, feel free to assume that you only have symbols 0, 1, and a.
Solution to Homework 1
2. (Due February 1)
- Use the general algorithm that
we learned in class to design a non-deterministic finite automaton
that recognizes the language (a U b)*b of all the words that
contain only letters a and b and that end in b:
- a and b
are languages consisting of only one 1-symbol word each: a is a
language consisting of a single 1-symbol word a; b is a language
consisting of a single 1-symbol word b;
- for any two languages
C and D, the notation CD means concatenation;
- transform
the resulting non-deterministic finite automaton into a
deterministic one.
Solution to Homework 2
3. (Due February 1) Apply the general algorithm for
transforming the finite automaton into a regular language (i.e., a
language described by a regular expression) to Automaton B from
Problem 1.4. For simplicity, assume that we only have symbols 0, 1,
and a. Eliminate first the error state, then the start state, and
finally, the state c.
Solution to Homework 3
4. (Due February 8) Write and test a method that simulates a
general finite automaton. Your program should enable the computer
to simulate any given finite automaton and then to simulate, for
any given word, step-by-step, how this automaton decides whether
this word is accepted by the automaton.
The input to this method should include the full description of the
corresponding finite automaton:
- the number N of states;
these states are q0, ..., qN − 1; we
assume that q0 is the start state; for simplicity, we
describe the states by the corresponding integers 0, ..., N;
- the number M of symbols; these symbols are s0, ...
sM − 1; for simplicity, we describe the symbols by
the corresponding integers 0, ..., M;
- an integer array
state[n][m] whose elements describe to what state the finite
automaton moves if it was in the state qn and sees the
symbol sm; and
- a boolean array final[n] whose
elements describe, for each state qn, whether this state
is final or not.
When simulating a finite automaton, your
program needs to keep track, at each moment of time, of the current
state. Initially, the state is q0 -- which is described
by number 0.
Turn in:
- a file containing the code of the method,
- a
file containing the code of the program that you used to test this
method, and
- a file containing the result of this testing.
Feel free to use Java, C, C++, Fortran, or any programming
language in which the code is understandable.
5. (Due February 8) Suppose that someone marks every time
the price of a share increases (I) by $1 and decreases (D) by $1.
As a result, you get a sequence like IDII. Based on the sequence,
we want to detect whether eventually, the price increased, i.e.,
whether the sequence contained more increases than decreases. Prove
that the language of all the sequences corresponding to eventual
increase is not regular.
Solution to Homework 5
6. (Due February 8) Show, step by step, how the following
pushdown automaton -- that checks whether a word consisting of
letters I and D describes a share whose price increases -- will
accept the word IDII. This pushdown automaton has three states:
- the starting state s,
- the working state w, and
-
the final state f.
In the stack, in addition to the bottom
symbol $, we have: - either one or several I's -- indicating
by how much the price of the stock increased so far,
- or one or
several D's -- indicating by how much the price of the stock
decreased so far.
The transitions are as follows: -
From s to w, the transition is ε, ε → $.
-
From w to f, the transition is: ε, I → ε.
-
From f to f, we have two transitions: ε, I → ε
and ε, $ → ε.
From w to w, we have the
following transitions: - If we see the symbol I and $ is on
top of the stack, we keep the dollar sign and add I to the stack,
i.e., we have transition I, $ → $ that brings us to an
intermediate state a1, and then the transition
ε, ε → I that brings us back to the working
state.
- If we see the symbol I and I is on top of the stack, we keep
the top I and add another I to the stack, i.e., we have transition
I, I → I that brings us to an intermediate state
a2, and then the transition ε, ε →
I that brings us back to the working state.
- If we see the symbol I and D is on top of the stack, we delete
the top D, i.e., we have transition I, D → ε.
- If we see the symbol D and $ is on top of the stack, we keep
the dollar sign and add D to the stack, i.e., we have transition D,
$ → $ that brings us to an intermediate state a3,
and then the transition ε, ε → D that brings
us back to the working state.
- If we see the symbol D and D is on top of the stack, we keep
the top D and add another D to the stack, i.e., we have transition
D, D → Dthat brings us to an intermediate state a4,
and then the transition ε, ε → D that brings
us back to the working state.
- If we see the symbol D and I is on top of the stack, we delete
the top I, i.e., we have transition D, I → ε.
Solution to Homework 6
7. (Due February 8) Show, step by step, how the following
grammar describing valid names for variables in an alphabet
consisting of 0, 1, and a will generate the word a01. In this
grammar, N stands for names, L for letters, and D for digits. The
rules are: N → L, N → NL, N → ND, L → a, D
→ 0, and D → 1.
Solution to Homework 7
8. (Due March 1) In the corresponding lecture, we described
an algorithm that, given a finite automaton, produces a
context-free grammar -- a grammar that generate a word if and only
if this word is accepted by the given automaton.
- On the
example of the automaton B from Homework 1.4, show how this
algorithm will generate the corresponding context-free grammar.
Similarly to Homework 3, assume that we only have symbols 0, 1, and
a.
- On the example of the word a01 accepted by this automaton,
show how the tracing of acceptance of this word by the finite
automaton can be translated into a generation of this same word by
your context-free grammar.
Solution to Homework 8
9. (Due March 1) Use a general algorithm to construct a
(non-deterministic) pushdown automaton that corresponds to
context-free grammar described in Problem 7. Show, step by step,
how the word a01 will be accepted by this automaton.
Solution to Homework 9
10. (Due March 1) Transform the grammar from Homework 7 into
Chomsky normal form.
Solution to Homework 10
11. (Due March 1) Use the general algorithm to transform the
pushdown automaton from Problem 6 into a context-free grammar.
Show, step-by-step, how the resulting grammar will generate the
word IDII.
Solution to Homework 11
12. (Due March 8) For the grammar described in Homework 7,
show how the word a01 can be represented as uvxyz in accordance
with the pumping lemma for context-free grammars. Show that the
corresponding word uvvxyyz will be generated by this grammar.
Solution to Homework 12
13. (Due March 8) Let us denote the most frequent letter in
a language by M, the second most frequent by S, and the third most
frequent by T. (For example, in English, the most frequent letter
is the letter E.) Prove that the language of all the sequences of
letters M, S, and T in which there are twice more M's than S's and
three times more M's than T's is not context-free.
Solution to Homework 13
14. (Due March 8) Show, step by step, how the stack-based
algorithm will transform the expression (3 / 1) − (1 * 3)
into a postfix expression, and then how a second stack-based
algorithm will compute the value of this postfix expression.
Solution to Homework 14
15. (Due March 22) Design a Turing machine that, given a
unary number n, adds 2 to this number. Test it, step-by-step, on
the example of n = 3.
Solution to Homework 15
16. (Due March 22) Design a Turing machine that, given a
positive binary number n ≥ 4, subtracts 4 from this number. Test
it, step-by-step, on the example of n = 6.
Solution to Homework 16
17. (Due March 22) Use the general algorithm to transform a
finite automaton B from Homework 1.4 -- as simplified in Homework
3, into a Turing machine. Show step-by-step, on an example of a
word a01, how this word will be processed by your Turing
machine.
Solution to Homework 17
18. (Due April 5) Write a program that, given an arithmetic
expression,
- first transforms it to a postfix form, and
then
- computes its value (by using the stack-based algorithms
that we recalled in class).
You can assume that the
expression contains no variables, only numbers, and all the numbers
are one-digit numbers, i.e., each of these numbers is either 0, or
1, or 2, ..., or 9. For example, your program should correctly
process expressions like 2+3*4, but there is no need to process
expressions like 11+22. For simplicity, assume that the only
arithmetic operations are addition +, subtraction −, and
multiplication *, and that there are no parentheses.
Comments:
- as with all programming assignments for
this class, submit a file containing the code, and a file
containing an example of what this program generates on each
step;
- ideally, use Java, but if you want to write it in some
other programming language, check with the TA that it is OK;
usually, C or C++ are OK.
19. (Due April 5) As described in the corresponding lecture,
every grammar obtained from a finite automaton is LL(1). For the
grammar from Homework 8, build the corresponding table.
Solution to Homework 19
20. (Due April 12) As we discussed in the corresponding
lecture, a Turing machine can be described as a finite automata
with two stacks:
- the right stack contains, on top, the
symbol to which the head points; below is the next symbol to the
right, then the next to next symbol to the right, etc.;
- the
left stack contains, on top, the symbol directly to the left of the
head (if there is a one), under it is the next symbol to the left,
etc.
On the example a Turing machine that computes n + 1 for a
binary number n = 3, show, step-by-step: - how each state
of the corresponding Turing machine can be represented in terms of
two stacks, and
- how each transition from one state to another
can be implemented by push and pop operations.
Solution to Homework 20
21. (Due April 12) Write and test a method that simulates a
general Turing machine. Your program should enable the computer to
simulate any given Turing machine for accepting-rejecting and then
to simulate, for any given word, step-by-step, how this Turing
machine decides whether this word is accepted or not.
The input to this method should include:
- the number N of
states q0, ..., qN − 1; we assume that
q0 is the start state, that the last-but-one state
qN − 2 is the accept state, and the last state
qN − 1 is the reject state;
- the number M of
symbols s0, ... sM − 1; we assume that
s0 is the blank state _;
- an integer array
state[n][m] that describes to what state the head of the Turing
machine changes if it was in the state qn and sees the
symbol sm;
- an integer array symbol[n][m] that
describes what symbol should be on the tape after the head in the
state qn sees the symbol sm (it may be the
same symbol as before, or it may be some other symbol written by
the Turing machine);
- a character array lr[n][m] that
describes, for each state qn and for each symbol
sm, whether the head moves to the left (L), or to the
right (R), or stays in place (blank symbol);
- the integer array
of a large size describing the original contents of the tape, i.e.,
what symbols are written in each cell.
This program needs to
keep track of a current location of the head. Initially, this
location is 0.
Your program should simulate the work of the Turing machine
step-by-step. Return the printout of the method, the printout of
the program that you used to test this method, and the printout of
the result of this testing. Feel free to use Java, C, C+++,
Fortran, or any programming language in which the code is
understandable.
22. (Due April 12) Give two examples:
- an example of
computation time which makes an algorithm feasible according to the
formal definition but not practically feasible, and
- an example
of computation time for which the corresponding algorithm is
practically feasible, but not feasible according to the formal
definition.
These examples should be different from what you
learned in class -- a minor difference is OK.
Solution to Homework 22
23. (Due April 19) What is NP? What is P? What is
NP-complete? What is NP-hard? Give brief definitions. Give an
example of an NP-complete problem. Is P equal to NP?
Solution to Homework 23
24. (Due April 19) Prove that the cubic root of 18 is not a
rational number.
Solution to Homework 24